
Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, İstanbul, Turkey, July 16 - August 10, 2007

MOBILE-PHONE BASED GESTURE RECOGNITION

Barış Bahar 1, Işıl Burcu Barla 1, Ögem Boymul 1, Çağlayan Dicle 1, Berna Erol 2, Murat
Saraçlar 1, Tevfik Metin Sezgin 3, Miloš Železný 4

1 Boğaziçi University, İstanbul, Turkey
2 Ricoh California Research Center, CA, USA

3 University of Cambridge, England
4 University of West Bohemia in Pilsen, Czech Republic

ABSTRACT

Mobile phones are increasingly being used for applications be-
yond placing simple phone calls. However, the limited input
capabilities of mobile phones make it difficult to interact with
many applications. In this work, we present a mobile gesture
recognizer where camera input of a mobile device is analyzed to
determine the user’s actions. Simple user gestures such as mov-
ing the camera from left to right and up and down are employed
in two mobile applications: map navigation and a drawing pro-
gram. In addition, more complex user gestures are converted
into commands with an HMM based algorithm. These com-
mands allow higher level interaction with the applications, such
as moving to a specific location on the map or changing the
drawing color. Index Terms mobile devices, computer vision,
mobile phones, camera phones, motion estimation, camera-based
interaction, HBMA, command recognition, gesture recognition

KEYWORDS

Mobile devices – Computer vision – Mobile phones – Cam-
era phones – Motion estimation – Camera-based interaction –
HBMA – Command recognition – Gesture recognition

1. INTRODUCTION

The simple keypad present in many mobile phones is adequate
for placing voice calls but falls short when interacting with mo-
bile applications such as web browsers, image and video browsers,
and location services. Because mobile phones are handheld de-
vices, user’s gestures can be easily utilized as additional inputs
(e.g. moving the phone to the right resulting in panning to the
right on a map on the screen). User gestures can be recog-
nized by sensors such as accelerometers and gyros on the de-
vice. However, currently mobile devices with such sensors is not
common. Most mobile phones are equipped with video cameras
which can be used to perform gesture recognition by analyzing
the optical flow. Simple gestures such as moving the phone up
and down can then be converted into commands that are inter-
preted by the application running on the phone.

In this paper, we present an implementation of mobile cam-
era phone based gesture recognition and its applications. We
recognize simple gestures such as leftright and up-down by ana-
lyzing optical flow and utilize these gestures for panning on map
images, Figure 1, and in a drawing application. In addition, a se-
quence of gestures, such as up-down followed by left-right, are
converted into high level commands that can be used for map
navigation or for customizing the parameters of a paint applica-
tions (e.g., specify pen thickness).

Although other camera phone based gesture recognizers ex-
ists in the literature [1][2], our system is the first vision based
gesture recognizer designed to run on a windows mobile phone

and first to incorporate high-level command recognition from
gestures. In the following sections, we first present an overview
of our system, then give details of the camera phone based ges-
ture recognizer in Section 2. Command recognizer is described
in Section 4, and applications are presented in 5. Finally, con-
clusions and future work is presented in Section 6.

Figure 1: Using gesture recognition users can easily navigate
maps and images on mobile phones.

2. SYSTEM OVERVIEW

Figure 2 given an overview of the camera phone based gesture
recognizer, which is implemented in C++ using Windows Com-
pact Framework and Pocket PC SDKs. A Windows mobile de-
vice, Palm Treo 700w [3] is used for deploying and running the
gesture recognizer.

Direct Show filters are employed for communication and
frame capture from the device camera. Frames are captured
in YUV12 format. Only luminance (Y) component is used for
analyzing the motion for real-time processing. Motion estima-
tor uses hierarchical block matching algorithm to determine the
global motion direction. We currently assume motion is limited
to panning (left-right-up-down). Once the global motion vector
[∆x, ∆y] is computed, it is directly used as input for applica-
tions, such as displacement on a map and moving the cursor in
a paint application. In addition, it is sent to a command recog-
nizer to determine the high level meaning of gestures.

139

Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, İstanbul, Turkey, July 16 - August 10, 2007

Figure 2: An overview of the gesture recognition system and its interaction with the applications.

3. MOTION RECOGNITION

In order to estimate the motion, the mobile phone’s onboard
camera is employed as the source of input. The direction and the
magnitude of movement in consecutive video frames are used
to infer the physical movement of the device by the user. Illus-
trative screen-shots captured while performing various gestures
are presented in Figure 3. As seen in the figure, our algorithm
is aimed to work with a variety of indoor and outdoor back-
grounds.

Proper estimation of the observed motion from camera’s on-
board camera requires fast and accurate tracking. In order to ful-
fil the speed and accuracy criteria, hierarchical block matching
algorithm (HBMA) is used to determine the motion direction
and magnitude. The difference between two adjacent frames
is used to estimate motion direction and magnitude, where di-
rection values represent the x-y plane and magnitude is scaled
according to dimension of the video frame.

Since colour image processing is computationally more ex-
pensive, we work with gray level images. For each consecutive
image, we estimate motion matrices for the x and y directions.
The means of these matrices give the direction and magnitude of
the motion in x-y plane. In general, HBMA tries to align an an-
chor image to a target image while minimizing their difference,
as illustrated in Figure 4. In order to achieve this, frames are
compared at different scales. First, the frames are down sam-
pled and smaller images are compared with little computation.
Then, at each level, images are enlarged in order to make ac-
curate estimates based on the ones made in the previous level.
This low computational complexity algorithm results in accurate
motion estimation.

Figure 4: 3-D illustration of HBMA process.

At every stage of the above mentioned computations, the
anchor frame is divided into blocks according to the level, and
then each block is compared with the corresponding ones in the

target frame as shown in Figure 5. The correspondence is com-
puted within a fixed search radius with the assumption that a
target block exists in this specified area. Although this limits
the maximum interframe device movement to fall below this
specified radius, it does not cause any deficiency in practice.
When matching two adjacent blocks, sum of Minimum Abso-
lute Difference method is employed and block mean values are
subtracted from this sum to reduce the lightning disturbance on
matching. The target block is chosen to be the one that has
the minimum difference. The distance and the position of the
computed target block with respect to the anchor block give the
magnitude and direction of the motion. By applying this tech-
nique for each block in the anchor frame, motion matrices of the
images in x and y directions are computed. At the subsequent
level, larger blocks are compared in a wider search area using a
larger radius where the previous motion matrices are used as a
starting point in order to reach a better estimation. Searching at
multiple levels and reusing estimates from coarser levels results
in an efficient and accurate matching. Motion vectors estimated
using HBMA for consecutive levels is presented in Figure 6.

4. COMMAND RECOGNITION

Command gesture recognition system processes the motion vec-
tors coming from the motion tracking part and decides on the
most probable command. This command is then sent to and
realized by the GUI. All possible commands, which are seven
letters namely “b, r, g, t, e, w and d” in this project, are defined
to the system. These commands and their corresponding meet-
ing in our two applications, paint and map navigation, are pre-
sented in There is a database consisting of short movies, which
are recordings with the mobile device, where each subject has
imitated the letter by moving the device on the air. For build-
ing the database all movies are processed by the motion tracker,
then vector quantization is applied for feature extraction and the
system is trained using this data.

By using the command recognizer in the demo applications,
the system will work real-time. In these applications, while one
certain button is pressed, the mobile device captures the video.
Then the motion tracker is activated. For each processed frame,
the motion vectors are sent to the command recognizer. By re-
leasing the button, the system finishes getting the observation.
After that, the command recognizer decides on the command
and sends this information to the running application GUI in or-
der to be realized.

In the following parts, first some general information about
the recognition theory will be given. Then, the implementation
of this theory will be mentioned, and lastly some test results will
be shown.

140

Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, İstanbul, Turkey, July 16 - August 10, 2007

Figure 3: Actual captured image sequences for various gestures.

Figure 5: In the first level of the pyramid, corresponding target frame block is estimated. In the subsequent levels, frame is up sampled,
previous motion vectors are corrected.

141

Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, İstanbul, Turkey, July 16 - August 10, 2007

Figure 6: Motion vectors corresponding to the estimates of
HBMA for consecutive levels. The final output of HBMA is the
image at the bottom from which the final motion is computed.

4.1. Theory

All recognition systems are based on similar theory. This type
of command recognition, which is described above briefly, can
be used in many applications, where the user wants to control a
mobile device without being limited with the keyboard.

In this project by the command recognition, Hidden Markov
Models (HMMs) are used as the underlying technology. Gener-
ally, modeling and recognition process requires four steps [4],
namely, feature extraction, determining the model parameters,
computing the probabilities and determining the most probable
state sequence.

Let’s examine the above mentioned steps in more detail. In
our project, by feature analysis vector quantization is used. A
vector quantizer maps k-dimensional vectors in the vector space
Rk into a finite set of vectors. The motion vector pairs are
grouped into three and these small groups are mapped in the ob-
servation space to some centroids and according to the database
of all these observations a codebook is determined and defined
to the system. The incoming data is then quantized according
to this codebook, which contains the values of the 32 centroids,
and each data group is mapped to the centroids.

The other three steps are the main problems in recognition.
First of all the model parameters should be determined accord-
ing to the nature of the commands, which will be recognized.
The model parameters should be chosen such that the proba-
bility of the observation sequence given the model is locally
maximized and then the iterative Baum-Welch algorithm or the
Viterbi algorithm will be used by computing the reestimated
model parameters. In this project the first approach was using
the eight directions as the base of the model parameters. The
advantage of this choice is that these model parameters are used
by all of the letters, so the need on huge amount of database is
decreased because by this method more samples for each model

Command s
Meaning

In Paint In Map Navigation
Application Application

b Set the pen color to Go to BUMEDblue

r Set the pen color to Go to Revirred

g Set the pen color to Go to Green Courtgreen

t Make the pen Go to Teras Canteenthinner
e Enable eraser Go to ETA Building

w Make the pen Go to Washburn Hallthicker (wider)

d Set the pen color to Go to Dormblack (default)

Table 1: High level commands and their interpretations in two
different applications.

Figure 7: The enumeration of the directions.

parameter could be observed. The definitions of the letters and
the model parameters are shown in Figure 7. The model pa-
rameters were these eight directions, long 1, long 5 (these were
needed according to the used letters) and the stabile situation.
Long 1 was labeled as 1+, long 5 as 5+ and the stabile standing
as 9. So, the letters coded with these labels are shown in Figure
8.

The test results with these model parameters were not sat-
isfactory. One reason for that was that the samples were very
different than each other. So, sharing the model parameters be-
tween the letters caused a large error rate. Hence, it was decided
to define 7 different parameters for each command. By running
the training algorithm, the system will learn the probability val-
ues corresponding to these parameters automatically.

There are two estimation algorithm candidates: Baum-Welch
and Viterbi algorithms. The difference of these two algorithms
is that the first one computes probabilities of all paths for all
times, where in Viterbi only the most probable path survives
to the next time instant. Hence, using Viterbi in this step de-
creases the needed memory and improves the speed of the sys-
tem, which is very important in this project, since the applica-
tions will be run on a mobile device, which has a low CPU and
limited memory capacity. Therefore Viterbi algorithm is chosen
as the used algorithm in estimation part. Moreover, the number
of the iterations should be chosen such that an optimum value
for the model is determined but one should take care not to cause
the model to completely depend on the training data. That will
cause the model to give false results by a data outside the train-
ing set.

By computing the probabilities and building the file contain-

142

Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, İstanbul, Turkey, July 16 - August 10, 2007

(a)

b : 9 5+ 4 3 2 1 8 7 6 9
r : 9 1+ 2 3 4 9
g : 9 8 7 6 5 4 3 2 1 5+ 6 7 8 9
t : 9 3 5+ 9
e : 9 3 2 1 8 7 6 5 4 3 9
w : 9 4 2 4 2 9
d : 9 8 7 6 5 4 3 2 1+ 9

(b)

Figure 8: Letter and model parameter definitions.

ing the probability mass functions of the model parameters the
training algorithm is used. As stated above the Viterbi algorithm
is used by determining the most probable state sequence in each
iteration. According to the state sequence and corresponding
observation in the data, the probability values are updated and
used in the next iteration.

When the system is trained according to the database, the fi-
nal step is determining the most probable state sequence where
any observation sequence and the determined model are given.
By this decoding task the Viterbi algorithm is used. Given the
state transitions, the first thing to do is building the trellis. Each
cell of the Viterbi trellis, vt(j) represents the probability that the
HMM is in state j after seeing the first t observations and pass-
ing through the most likely state sequence q1 · · · qt−1, given the
model λ. The value of each cell vt(j) is computed by recur-
sively taking the most probable path that could lead to this cell.
Formally, each cell expresses the following probability [5]:

vt(j) = P (q0, q1 · · · qt−1, o1, o2 · · · ot, qt) = j|λ) (1)

Like other dynamic programming algorithms, Viterbi fills
each cell recursively. Given that the probability of being in every
state at time t−1 is already computed, the Viterbi probability is
computed by taking the most probable of the extensions of the
paths that lead to the current cell. For a given state qj at time t,
the value vt(j) is computed as [5]:

vt(j) = max
1≤i≤N−1

vt−1(i)aijbj(ot) (2)

In the above equation, aij gives the transition probability
from state i to state j and bj(ot) is the probability that at time t
in state j observation ot occurs.

Explaining shortly the algorithm, it can be stated that for
time t = 1, the metrics values in the trellis corresponding to the
states to which a transition from the beginning state is allowed,

are computed. After that according to the transitions the met-
rics are computed at each time slot. By these calculations only
the path with the lowest cost can survive, others are eliminated,
which is the key point in the Viterbi algorithm. Moreover, at
each time slot the most probable path for each state from the
previous time slot is memorized in a back pointer. At the end,
the back pointer is read from end to beginning starting by the
state for t = T with highest probability. The recognition sys-
tem used in this project is designed in the light of this theory
using the programming languages C/C++.

4.2. Implementation

4.2.1. Search and Decoding

This part is done by using the Viterbi algorithm as explained
above. The main function is called Recognizer() and is de-
signed as an API, which should be called by the application.
While a certain button is pressed, the movie is captured, pro-
cessed and given as input to the recognizer after the features are
extracted. Feature extraction is done by quantizing the incom-
ing vectors according to the predefined codebook. This program
needs four input files, namely, pmf.txt, durations.txt,
labels.txt and transitions.txt. The first file con-
tains the probabilities of the model parameters. The second
one gives the probability of staying in the same state for each
model parameter. In this project seven commands are used and
49 model parameters are defined. The third file contains the la-
bels of these parameters and the last one determines the model,
where each possible transition and its probability are defined.

4.2.2. Model parameter estimation

It is used for estimating the pmf values and the duration prob-
abilities. As output it gives the minus likelihoods and the up-
dated versions of pmf.txt and durations.txt at each it-
eration. The Count() function counts the occurrence rate of
each model parameter for the complete command space. Using
this information and the result of the Viterbi algorithm at each
step, new probabilities are calculated. It takes as input the ini-
tial probabilities and the transition files corresponding to each
separate command.

5. APPLICATIONS

Possible applications of the gesture recognition include: brows-
ing maps, images, videos, web; playing games; handwriting...
For demonstration of gesture recognition we implemented two
applications: a map navigation application and a drawing appli-
cation.

5.1. Map Navigation

A map navigation application is implemented utilizing gesture
recognition as illustrated in Figure 9. In the map navigation ap-
plication three control modes are assumed: panning the map,
zooming the map and navigating to a particular place. To be
able to process these three control modes, we designed main
variables for the control: X and Y coordinates of the center of
the map and zoom factor. Map control can be seen as watching
bigger map (generally bitmap image) through a small window.
X and Y coordinates control the position of the center of this
window and zoom factor controls the magnification of the view-
able part.

To control the map the algorithm is as follows:
• to navigate the map to certain position means set X and

Y to that position (in image coordinates)

143

Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, İstanbul, Turkey, July 16 - August 10, 2007

Figure 9: Map application that interprets hand gestures for moving the viewing window on a larger map image in the memory.

• to pan the map means modify X and/or Y according to
desired pan motion

• to zoom the map means to increase or decrease the zoom
ratio by amount specified by desired zoom change

It is supposed to control these three functionalities by device
gestures. Navigating the map by letter gesture command (or
speech), panning the map by the movement of the device in front
of a stable view, and zooming the map by the movement in the
direction towards the user or farther from the user.

To simulate the pan and zoom functionality before gesture
input could be connected, mouse (stylus) input was implemented.
The Palm application had two main modes, the pan and zoom
mode. In the pan mode, the touch and movement of the stylus
caused panning the map in the corresponding direction. In the
zoom mode, the touch and movement of the stylus caused the
zooming (movement upwards - zoom in, movement downwards
- zoom out).

To demonstrate the navigate functionality there also exist
several modes which zoom into the predefined places of the
map. They are activated by drawing the first letter of the place
in a predefined manner with the device in the air, or by choos-
ing the name from the menu with the stylus. In the latter case
the functionality could be debugged before connecting the real
gesture input.

5.2. Paint Application

Paint application assumes simple drawing functions: Starting to
draw a stroke, drawing a stroke by device movements, finishing
to draw a stroke, changing the colour and thickness of the pen
and erase. Then user may want to change position and start
to draw another stroke. To accomplish this functionality, we
must retain the list of stroke point coordinates and draw a line to
the screen between points given by these coordinates. Dynamic
array of coordinates is a good structure for this purpose, since
the length of a stroke is not known in advance and is dependent
on how long the user draws the stroke. To indicate any change
of colour or thickness, again dynamic arrays are used.

Functionality that has to be implemented is thus

• start to draw

• draw

• finish drawing

• add color and width options (as eraser is imitated with a
considerably thick white pen.)

Again, this will be controlled by gestures of the device,
starting and finishing by pushing the button on the device, draw-
ing by movements of the device. Another button is reserved for
identifying the color and thickness options which are specified
by drawing the first letter of the command in the air with the de-
vice in a predefined manner. For simulation, stylus events were
processed and used as an alternative control.

5.2.1. Mouse/stylus input and windows messaging

To process mouse/stylus input in MS Windows environment,
windows messaging system is used. In the main processing
function of an application, we must process the windows mes-
sages. For mouse input, the main three messages that were used
for simulation functionality are WM LBUTTONDOWN, WM LBUT
TONUP, and WM MOUSEMOVE. The first message is sent when-
ever user presses the left mouse button (or touches the touch-
screen with the stylus), the second one is sent once the button is
released (the stylus leaves the touch-screen), the third when the
mouse coordinates have changed (in the case of stylus, we can
of course follow the coordinates only when the stylus touches
the screen).

All three messages are sent together with screen coordinates
of the mouse/stylus. Thus, we have to process these coordi-
nates to control the application. In the case of map panning
functionality, on WM LBUTTONDOWN we set panning=TRUE,
and remember the coordinate, then on each WM MOUSEMOVE
we check if panning==TRUE, then get coordinates, count dif-
ference from last stored coordinates and control panning by this
difference. Then we store new last coordinate. On WM LBUTTON
UP we finish panning by setting panning=FALSE. Similar
approach is used for other functionalities. In zooming mode
we also retain the last coordinates, but by the coordinate dif-
ference we control the zoom factor. In paint functionality, on
WM LBUTTONDOWN we start to draw (drawing=TRUE) and
retain coordinates of the first point of a stroke, on WM MOUSEMO

144

Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, İstanbul, Turkey, July 16 - August 10, 2007

VE we check whether drawing==TRUE, then get coordinates
and store them in memory. On WM LBUTTONUP we finish the
stroke and set drawing=FALSE.

For drawing to the device screen, another windows message
is used: WM PAINT. We have to process this message and paint
the screen according to given control variables. It means that
all the painting (showing the desired map portion or drawing
a stroke) is done in this part of code whenever the Windows
ask for it. In processing of the mouse messages (or the gesture
input) we only modify control variables and tell the Windows
that there is a change that needs repainting the window (calling
InvalidateRect(...);)

Appendix 9.1 contains part of the code that illustrates the
windows messaging.

6. CONCLUSIONS AND OUTLOOK

In this paper we presented our work on mobile phone based ges-
ture recognition and its applications. The video input of a cam-
era phone is analyzed with HBMA in order to determine simple
user actions. These simple actions then analyzed further with
command recognizer to generate high level commands.

Improvements to the motion recognizer is possible by in-
corporating tracking of image features, such as SIFT features,
and prediction of motion with Kalman filtering. We presented
two sample applications, map navigator and a drawing program.
Many other applications, such as video games, web browsing,
and handwriting recognition are possible using mobile gesture
recognizer.

7. ACKNOWLEDGEMENTS

Authors thank Ricoh Innovations California Research Center for
donating the mobile device for development.

This report, as well as the source code for the software de-
veloped during the project, is available online from the eNTER-
FACE’07 web site: http://www.enterface.net

8. REFERENCES

[1] J. Wang, S. Zhai, and J. Canny, “Camera Phone Based Mo-
tion Sensing: Interaction Techniques, Applications and Per-
formance Study”, in ACM UIST, 2006. 139

[2] A. Haro, K. Mori, V. Setlur, and T. Capin, “Mobile Camera-
based Adaptive Viewing”, in 4th International Conference
on Mobile Ubiquitous Multimedia (MUM), 2005. 139

[3] Palm Treo 700 w mobile device. http://www.palm.
com/us/products/smartphones/treo700w/.
139

[4] L. R. Rabiner, “A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition”, in Proceed-
ings of the IEEE, vol. 77, feb 1989. 142

[5] D. Jurafsky and J. H. Martin, Speech and Language Pro-
cessing: An Introduction to Natural Language Process-
ing, Computational Linguistics and Speech Recognition.
Prentice-Hall, 2000. 143

9. APPENDIX: SOFTWARE NOTES

9.1. Applications

Below is a part of the code that illustrates the windows messag-
ing:

LRESULT CALLBACK WndProc (
HWND hWnd , UINT message ,
WPARAM wParam , LPARAM lParam)
{

i n t wmId , wmEvent ;
PAINTSTRUCT ps ;
HDC hdc ;

/ / RECT r c i n v ;
i n t xPos ;
i n t yPos ;
do ub l e h a l f x ;
do ub l e h a l f y ;

(. . .)
s w i t c h (message)
{

(. . .)
c a s e WM PAINT:

hdc = B e g i n P a i n t (hWnd , &ps) ;
DrawImage (hdc) ;
E n d P a in t (hWnd , &ps) ;

b r e a k ;
(. . .)

c a s e WM LBUTTONDOWN:
/ /WM LBUTTONDOWN fwKeys = wParam ;

l a s t m o u s e x = LOWORD(lParam) ;
l a s t m o u s e y = HIWORD(lParam) ;
drawing = TRUE;

b r e a k ;
c a s e WM LBUTTONUP:

drawing = FALSE ;
b r e a k ;
c a s e WM MOUSEMOVE:

i f (d rawing ==TRUE)
{

xPos = LOWORD(lParam) ;
yPos = HIWORD(lParam) ;
s h i f t x = xPos − l a s t m o u s e x ;
s h i f t y = yPos − l a s t m o u s e y ;

(. . .)
I n v a l i d a t e R e c t (hWnd , &rc wnd , FALSE) ;
UpdateWindow (hWnd) ;
}

b r e a k ;
(. . .)
}
r e t u r n 0 ;
}

9.2. Pseudo code of HBMA and EBMA

I n p u t :
A = Anchor Image
T = T a r g e t Image
B = Block S i z e
R = Radius
N = Number o f Pyramid L e v e l s

Outpu t :
Mv = Motion V e c t o r s

I n i t i a l i z e mot ion v e c t o r s Mv t o z e r o .
For n = N t o 1

Downsample a nc ho r image A and t a r g e t image T by 2 ˆ (n
−1)

Pad z e r o p i x e l s t o f i t t h e b l o c k s i z e
S e t t h e s e a r c h r a d i u s r = R / 2 ˆ (n−1)
S e t t h e b l o c k s i z e b = B
Apply EBMA t o u p d a t e t h e mot ion v e c t o r s Mv
Upsample Mv by 2

End

I n p u t :
A = Anchor Image
T = T a r g e t Image
B = Block S i z e
R = Radius
Mv = I n i t i a l Motion V e c t o r s

Ouput :
Mv = Updated Motion V e c t o r s

For each b l o c k i n t h e a nc ho r f rame
Take t h e n e x t bxb an ch o r b l o c k Ba
S h i f t t o t h e p r e v i o u s e s t i m a t e Mv
For each b l o c k Bt o f t a r g e t f rame i n t h e r a d i u s r

F ind t h e b l o c k wi th minimum MAD e r r o r

145

http://www.enterface.net
http://www.palm.com/us/products/smartphones/treo700w/
http://www.palm.com/us/products/smartphones/treo700w/

Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, İstanbul, Turkey, July 16 - August 10, 2007

Update mot ion v e c t o r s Mv
End

End

10. BIOGRAPHIES

Barış Bahar finished high school in Bursa
in 2003. He is now an undergraduate stu-
dent of the Faculty of Computer Engineer-
ing at Boğaziçi University, İstanbul.
Email: barisbahar86@yahoo.com

Işıl Burcu Barla graduated from the Fac-
ulty of Electrical and Electronic Engi-
neering of Boğaziçi University, Turkey in
2007. She is now continuing her study
at Technical University Munich, Germany.
She has worked on speech and gesture
recognition systems.
Email: burcubarla@gmail.com

Ögem Boymul finished high school in
Adana in 2003. She is currently an under-
graduate student of the Faculty of Electri-
cal and Electronic Engineering at Boğaziçi
University, İstanbul.
Email: ogem.boymul@boun.edu.tr

Çağlayan Dicle received his B.Sc. de-
gree from Computer Science Department
at Yeditepe University in 2004. He is now
an M.S. student at System and Control En-
gineering at Boğaziçi University. His main
research interests are computer vision and
machine learning applications specifically
on deformable object tracking and non-
parametric classification.
Email: caglayan.dicle@boun.edu.tr

Miloš Železný was born in Plzen, Czech
Republic, in 1971. He received his Ing.
(=M.S.) and Ph.D. degrees in cybernet-
ics from the University of West Bohemia,
Plzen, Czech Republic in 1994 and in
2002 respectively. He is currently a lec-
turer at the University of West Bohemia,
Plzen, Czech Republic. He has been deliv-
ering Digital Image Processing, Structural
Pattern Recognition and Remote Sensing

lectures since 1996 at the University of West Bohemia. He is
working in projects on multi-modal speech interfaces (audio-
visual speech, gestures, emotions, sign language). He publishes
regularly and he is a reviewer of the INTERSPEECH conference
series.
Email: zelezny@kky.zcu.cz

Berna Erol received her B.Sc. degree
in Control and Computer Engineering at
İstanbul Technical University and M.Sc.
and PhD. Degrees in Electrical and Com-
puter Engineering at the University of
British Columbia, in 1998 and 2002, re-
spectively. Since September 2001 she has
been a senior research scientist at Ricoh

California Research Center, USA. Dr. Erol has authored or
co-authored more than 35 journal and conference papers, two
book chapters, and more than 40 patent applications in the area
of multimedia signal processing. Her main contributions to re-
search and development consist of content-based video and im-
age retrieval, image and video coding and representation, E-
learning and E-meeting systems, text retrieval, new era multi-
media systems, and applications, and multimedia processing for
mobile devices. She has served in the program and the techni-
cal committees of leading ACM and IEEE conferences such as
ACM Multimedia and IEEE ICME. She is an associated editor
of the IEEE Signal Processing Magazine and a co-chair in the
SPIE Electronic Imaging organizing committee. She had been
an active participant in the video coding standardization activi-
ties such as ITU-T H.263 and MPEG-7.
Email: berna erol@rii.ricoh.com

Murat Saraçlar received his B.S. degree
from Bilkent University, Ankara, Turkey
in 1994. He earned both his M.S.E. and
Ph.D. degrees from Johns Hopkins Uni-
versity, Baltimore, MD, USA in 1997 and
2001 respectively. He worked on auto-
matic speech recognition for multimedia
analysis systems from 2000 to 2005 at the
AT&T Labs Research. In 2005, he joined

the Department of Electrical and Electronic Engineering at
Boğaziçi University as an assistant professor. His main research
interests include all aspects of speech recognition, its applica-
tions, as well as related fields such as speech and language pro-
cessing, human-computer interaction and machine learning. He
currently leads a TUBITAK funded project on Turkish Broad-
cast News Transcription and Retrieval. He authored and co-
authored more than two dozen papers in refereed journals and
conference proceedings. He has filed four patents, both interna-
tionally and in the US. He has served as a reviewer and program
committee member for various speech and language process-
ing conferences and all the major speech processing journals.
He was the Area Chair for the Human Language Technology
Conference and Conference on Empirical Methods in Natural
Language Processing (HLT/EMNLP) in 2005. He is currently
a member of IEEE and ISCA. He was recently elected to serve
as member of the IEEE Signal Processing Society Speech and
Language Technical Committee (2007-2009).
Email: murat.saraclar@boun.edu.tr

Tevfik Metin Sezgin graduated summa
cum laude with Honors from Syracuse
University in 1999. He received his MS
in 2001 and his PhD in 2006, both from
Massachusetts Institute of Technology. He
is currently a Postdoctoral Research As-
sociate in the Rainbow group at the Uni-
versity of Cambridge Computer Labora-
tory. His research interests include intel-
ligent human-computer interfaces, multi-

modal sensor fusion, and HCI applications of machine learning.
Email: metin.sezgin@cl.cam.ac.uk

146

mailto:barisbahar86@yahoo.com
mailto:burcubarla@gmail.com
mailto:ogem.boymul@boun.edu.tr
mailto:caglayan.dicle@boun.edu.tr
mailto:zelezny@kky.zcu.cz
mailto:berna_erol@rii.ricoh.com
mailto:murat.saraclar@boun.edu.tr
mailto:metin.sezgin@cl.cam.ac.uk

	1 Introduction
	2 System Overview
	3 Motion Recognition
	4 Command Recognition
	4.1 Theory
	4.2 Implementation
	4.2.1 Search and Decoding
	4.2.2 Model parameter estimation

	5 Applications
	5.1 Map Navigation
	5.2 Paint Application
	5.2.1 Mouse/stylus input and windows messaging

	6 Conclusions and Outlook
	7 Acknowledgements
	8 References
	9 Appendix: software notes
	9.1 Applications
	9.2 Pseudo code of HBMA and EBMA

	10 Biographies

