
Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, İstanbul, Turkey, July 16 - August 10, 2007

BENCHMARK FOR MULTIMODAL AUTHENTICATION

Morgan Tirel 1, Ekin Olcan Şahin 2, Guénolé C. M. Silvestre 3, Clı́ona Roche 3, Kıvanç Mıhçak
2, Sinan Kesici 2, Neil J. Hurley 3, Neslihan Gerek 2, Félix Balado 3

1 University of Rennes, France
2 Boğaziçi University, Turkey

3 University College Dublin, Ireland

ABSTRACT

We report in this document on the development of a multimodal
authentication benchmark during the eNTERFACE’ 07 work-
shop. The objective of creating such a benchmark is to evalu-
ate the performance of multimodal authentication methods built
by combining monomodal authentication methods (i.e., multi-
modal fusion). The benchmark is based on a graphical user in-
terface (GUI) that allows the testing conditions to be modified
or extended. It accepts modular monomodal authentication al-
gorithms (feature extraction, robust hashing, etc) and it allows
them to be combined into multimodal methods. Attacks and
benchmarking scripts are similarly configurable. An additional
output of the project is a multimodal database of individuals,
which has been collected in order to test the benchmark.

KEYWORDS

Benchmarking – Multimodal authentication – Feature extraction
– Robust hashing

1. INTRODUCTION

Traditional authentication of individuals has usually been fo-
cused on methods relying on just one modality. Typically these
modalities can be images of faces, hands (palms), irises or fin-
gerprints, or speech samples. For instance, one may take a photo
of the face of a person and obtain from it a nearly unique low-
dimensional descriptor that identifies that person. Depending
on the particular application targeted, this identifier can be ob-
tained by means of different types of methods. Typical examples
are feature extraction methods or, under some conditions, robust
hashing methods, e.g. [1], [2]. The identifiers thus obtained can
be compared to preexisting ones in a database for a match. Au-
thentication systems based on multimodal strategies – that is,
joint strategies– combine two or more monomodal methods into
a multimodal one. For instance, it is possible to combine one
method to hash an image using face images and another method
to obtain a feature vector from a palm image. This is sometimes
referred to as multimodal fusion. The aim is to increase the reli-
ability of the identification procedure when combining different
sources of information about the same individual (see [3], for
example). As we will see, some other considerations are nec-
essary in order to optimally undertake the merging of different
multimodal methods.

Over the last number of years, many algorithms applicable
to authentication have been proposed. Although some of these
methods have been partially analyzed in a rigorous way, in many
cases it is not feasible to undertake exhaustive analytical perfor-
mance analyses for a large number of scenarios. This in part
due to the sheer complexity of the task. Nevertheless, it is nec-
essary to systematically evaluate the performance of new meth-
ods, especially when they are complex combinations of existing

methods and used in a variety of scenarios. With such an eval-
uation it becomes possible to determine the best authentication
strategies.

One way to tackle this problem is by means of benchmark-
ing. Benchmarks have been proposed in the past for perfor-
mance evaluation of many technologies, ranging from CPU units
to watermarking technologies [4]. An advantage of benchmarks
is that they see methods for testing as black boxes, which allows
a high degree of generality. Despite this great advantage, one
must be aware that benchmarks also entail issues such as how to
choose fair (unbiased) conditions for benchmarking without an
exponential increase in the associated computational burden.

The main goal of the eNTERFACE Workshop Project num-
ber 12 has been to create a GUI-driven benchmark in order to
test multimodal identification strategies. This technical report
contains information on the planning and development of this
project. The remainder of this document is organized as follows.
In Section 2 we describe the basic structure of the benchmark.
In Section 3 we give the benchmark specifications which have
been used as guidelines for implementing the benchmark, while
Section 4 describes the methods and functions implemented to
be tested within the benchmark. Finally, Sections 5 and 6 de-
scribe the database collection effort and the tests undertaken,
while Section 7 draws the conclusions and future lines of this
project.

2. DESCRIPTION OF THE BENCHMARK

Early in the project preparations, it was decided to implement
the benchmark prototype in Matlab. This decision was taken in
order to speed up the development time, as Matlab provides a
rather straightforward procedure to build GUI applications, and
it is faster to write Matlab code for the development of methods
to be included in the benchmark. The downside is inevitably the
execution speed, which can be critical for completing bench-
mark scripts within a reasonable timeframe. Nevertheless C
code can also be easily interfaced to Matlab, using so called Mex
files. The prototype is meant to be both usable and extendable,
in order to facilitate the inclusion of new items and features. The
interface has been designed so that extension or modification of
the benchmark is almost completely automated. An exception
is the addition of new benchmarking scripts (see Section 2.4),
in order to keep the benchmark implementation simple. This
means that it is possible to do most operations through the GUI,
and manual adjustments of the source code are only necessary
for the less frequent action of adding new types of benchmark-
ing scripts. A scheme showing the relationships between the
different parts of the benchmarking system is shown in Figure
1.

The benchmark relies on a database storing all relevant data.
This is implemented in MySQL and interfaced to Matlab. The
purpose of this database architecture is two-fold. Firstly, it is

147

Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, İstanbul, Turkey, July 16 - August 10, 2007

Figure 1: Relationships between the main parts of the bench-
mark.

an efficient way to store and access the information; secondly,
it allows easy sharing of the data over a network in order to
parallelize the benchmark in the future, thus distributing the un-
avoidable computational burden of the benchmark.

The project requires a database of individuals featuring sig-
nals such as face images, hand images and speech. The details
on the database collection task are given in Section 5. All this
information is stored in the MySQL database together with the
identifiers (i.e., extracted features, hash values) obtained from
the individuals, and all libraries of methods and functions. In or-
der to minimize the effects of intra-individual variability, which
especially affects some robust hashing algorithms (see for in-
stance [5]), the database of individuals includes several instances
of each identifier corresponding to a given individual.

The benchmark admits new modules through four libraries
(see Figure 1) whose function we describe next.

2.1. Library of monomodal methods

This library contains standard monomodal methods which can
be added, removed or edited through the GUI (see Section 3.6).
For each method two functions are defined:

• An acquisition function, that takes as input a file con-
taining a signal of the given modality (e.g., an audio clip
or image) associated with a particular individual, as well
as function-dependent parameters, such as thresholds and
other. It outputs an identifier vector, binary or realvalued,
depending on the method. The output identifier is stored
in the database associated with the individual whose sig-
nal has been used.

• A comparison function, which takes as input two iden-
tifier vectors plus any necessary parameters, and outputs
both a Boolean (hard) decision of similarity between them,
and a (soft) reliability measure. This reliability shows the
degree of confidence we put in the decision which is put
forward by the function. As we will discuss in the next
section, it is a key element in order to optimally combine
two different modalities.

2.2. Library of multimodal methods

This library contains methods which, relying on the library in
Section 2.1, specify ways to combine two (or more) monomodal
methods in order to create multimodal identifiers. We may view
this operation as an instance of multimodal fusion. For instance,
the system allows the combination of a method to robustly hash
face images with a method to extract features from a fingerprint;
the newly created method is stored in the library as a multimodal
method.

As already discussed, it is fundamental that each multimodal
method implements an overall comparison function, able to break
ties between possibly contradictory monomodal decisions when
looking for matches in the database. Let us denote by e1 the
difference between the two input identifiers to the comparison
function for modality type 1, and let us call d1 the outcome of
the monomodal binary decision, mapped without loss of gen-
erality to +1 and −1. If D1 represents the random variable
associated with that decision, with possible values D1 = +1
(the two input identifiers correspond to the same individual) and
D1 = −1 (otherwise), the optimal monomodal decision is given
by:

d1 = sign

„
log

Pr{D1 = +1|e1}
Pr{D1 = −1|e1}

«
. (1)

We may see the log-likelihood ratio as the reliability of the
decision. We propose to obtain the overall decision dF for the
fusion of M modalities as

dF = sign

MX

k=1

wk · log
Pr{Dk = +1|ek}
Pr{Dk = −1|ek}

!
, (2)

where the subindex k refers to the modality k used in the
fusion, and wk is a set of positive weights such that ||w||2 = 1.
These weights reflect the importance that we wish to grant to
each modality in the multimodal fusion. Note that in order to im-
plement Eq. 1 accurate statistical modelling is required in order
to obtain the conditioned probabilities, which may not always
be feasible. In fact, many feature extraction and robust hashing
methods implement this comparison function in a mostly heuris-
tic way. If the reliability measures above are not available, it is
always possible to implement a weaker version of Eq. 2 using
the hard decisions:

d̃F = sign

MX

k=1

wk · dk

!
. (3)

2.3. Library of attacks

It accepts attack functions on the signals stored in the individ-
uals database. Attacked signals are used to assess how robust
multimodal methods perform in two different situations:

1. The inputs are distorted versions of the authentic signals.

2. The inputs are non-authentic (malicious) signals, aiming
at being wrongly verified as authentic.

148

Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, İstanbul, Turkey, July 16 - August 10, 2007

2.4. Library of benchmarking scripts

It lists scripts which may be run in batch mode (i.e., autonomous-
ly), using signals from the database, a multimodal method, and
attacks suitable to the modalities involved. Performance mea-
sures such as the rates of detection and false alarm (obtained by
comparison with the authentic identifiers) will be computed dur-
ing the execution of the script. In the scripts there may be loops
where some attack parameters are generated pseudo-randomly.

3. BENCHMARK SPECIFICATIONS

We describe next the specifications that were used as technical
guidelines to implement the benchmark. The most important
structures and functions are described with some level of detail.

3.1. Individuals database

The basic structure of an entry in the individuals database is
given by the following structure:

s t r u c t (
’ name ’ ,{} ,
’ a u t h e n t i c a t e d ’ ,{} ,
’ f i l e l i s t ’ , s t r u c t (

’ name ’ ,{} ,
’ pa th ’ ,{} ,
’ type ’ ,{}

) ,
’ h a s h l i s t ’ , s t r u c t (

’ method name ’ ,{} ,
’ h v a l u e ’ ,{}

)
)

h value may contain double or char values depend-
ing on the particular output of the method: some authentication
methods methods output binary vectors, whereas others output
real vectors.

Example: the 3rd individual dbi(3) in the database dbi
with the structure above could be

d b i (3) . name= ’ joe ’
d b i (3) . a u t h e n t i c a t e d =1
d b i (3) . f i l e l i s t (1) . name= ’ j o e 1 . jpg ’
d b i (3) . f i l e l i s t (1) . p a t h = ’ / tmp / ’
d b i (3) . f i l e l i s t (1) . t y p e = ’ face ’
d b i (3) . f i l e l i s t (2) . name= ’ j o e 2 . jpg ’
d b i (3) . f i l e l i s t (2) . p a t h = ’ / tmp / ’
d b i (3) . f i l e l i s t (2) . t y p e = ’ face ’
d b i (3) . f i l e l i s t (3) . name= ’ hand1 . jpg ’
d b i (3) . f i l e l i s t (3) . p a t h = ’ / tmp / ’
d b i (3) . f i l e l i s t (3) . t y p e = ’ hand ’
d b i (3) . f i l e l i s t (4) . name= ’ j o e 1 . jpg ’
d b i (3) . f i l e l i s t (4) . p a t h = ’ / tmp / ’
d b i (3) . f i l e l i s t (4) . t y p e = ’wav ’
d b i (3) . h a s h l i s t (1) . method name = ’ p h i l i p s m e t h o d ’
d b i (3) . h a s h l i s t (1) . h v a l u e = ’ a d s f d a s b a s d f s d s a f s a ’
d b i (3) . h a s h l i s t (2) . method name = ’ mihcak method ’
d b i (3) . h a s h l i s t (2) . h v a l u e = ’ qqvx&3242rew ’

Notice that two hash string values are associated to this in-
dividual, corresponding to the output of the corresponding func-
tions in the library of hashing/feature extraction methods (see
next section). The dbi variable is duly stored in the MySQL
database.

3.2. Library of monomodal methods

The basic structure of entries in this library is:

s t r u c t (
’ method name ’ ,{} ,
’ med ia type ’ ,{} ,
’ h a s h f u n c t i o n ’ , s t r u c t (

’ name ’ ,{} ,
’ p a r a m e t e r s l i s t ’ ,{}

)
’ co m p f un c t i o n ’ , s t r u c t (

’ name ’ ,{} ,

’ p a r a m e t e r s l i s t ’ ,{}
)

)

As discussed in Section 2.1, every monomodal method will
have a hash function and a comparison function associated. The
benchmark accepts functions whose prototype for the acquisi-
tion is
s t r i n g h v a l u e = f u n c t i o n h a s h f (s t r i n g f i l e ,

p a r a m e t e r s)

and for the comparison
[b o o l e a n d e c i s i o n , d oub l e r e l i a b i l i t y] = f u n c t i o n

comp f (s t r i n g h v a l u e 1 , s t r i n g h v a l u e 2 , p a r a m e t e r s
) .

If decision=1 then the hash strings h value1 and h
value2 match according to the comparison function, whereas
decision=0 means they do not. The reliability param-
eter ranges indicates how good the decision is.

Example: the 2nd method in a monomodal library mml
with the structure above could be:
mml (2) . method name = ’ p h i l i p s m e t h o d ’
mml (2) . m e d i a t y p e = ’ audio ’
mml (2) . h a s h f u n c t i o n . name= ’ p h i l i p s h a s h ’
mml (2) . h a s h f u n c t i o n . p a r a m e t e r s l i s t ={0 .37 ,0 .95}
mml (2) . c o m p f u n c t i o n . name= ’ p h i l i p s c o m p ’
mml (2) . c o m p f u n c t i o n . p a r a m e t e r s l i s t = .9

The files philips hash.m and philips comp.m,
which must be in the path, implement the corresponding acqui-
sition function
h v a l u e = f u n c t i o n p h i l i p s h a s h (f i l e , f r a m e s i z e ,

o v e r l a p) ,

and comparison function
[d e c i s i o n , r e l i a b i l i t y] = f u n c t i o n p h i l i p s c o m p (

h v a l u e 1 , h v a l u e 2 , t h r e s h o l d) .

The mml array variable is stored in the MySQL database.

3.3. Library of multimodal methods

The basic structure of entries in this library will be:
s t r u c t (

’ method name ’ ,{} ,
’ m o n o m o d a l m e t h o d s l i s t ’ ,{} ,
’ comp weights ’ ,{} ,
’ a t t a c k l i s t ’ ,{}

)

The generation of a multimodal hash entails the execution of
all the monomodal methods whose names are listed in monomo
dal methods list on all corresponding file types of a given
individual (image, audio). This generates a series of monomodal
identifiers which are incorporated into the structure in Section
3.1.

As discussed in Section 2.2, the comparison of multimodal
identifiers requires an overall function in order to break ties
between two (or more) monomodal comparison functions (e.g.
two monomodal methods that are fused into a multimodal one
can give contradictory decisions when using the monomodal
comparison functions). According to that discussion we im-
plement this function using the reliability parameter fur-
nished by monomodal comparison function, and using a set of
weights comp weights. This set is a list of values between
0 and 1 that adds up to 1; each value corresponds to a func-
tion in monomodal methods list, in order to weight the
importance of the monomodal methods in the overall compar-
ison. The multimodal decision will be 1 if the weighted sum
of monomodal reliabilities is greater than 0.5, and 0 otherwise
(note that we have mapped for convenience {+1,−1} to {1, 0}
with respect to Section 2.2).

149

Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, İstanbul, Turkey, July 16 - August 10, 2007

Example: the 1st entry in the multimodal library MMl, with
the structure described above, could include two methods from
the monomodal library. The first method was described above.
Let us assume that the second method is of media type=’im-
age’.

MMl(1) . method name = ’ MM firs t ’
MMl(1) . m o n o m o d a l m e t h o d s l i s t ={ ’ p h i l i p s m e t h o d ’ , ’

mihcak method ’}
MMl(1) . comp weigh t s ={ . 4 5 , . 5 5}
MMl(1) . a t t a c k l i s t ={ ’ g a u s s i a n ’ , ’ random ’}

The MMl array variable is stored in the database. The overall
comparison for the multimodal function MM first will be 1 if
(cf. Eq. 2)

r 1∗comp weigh t s (1) + r 2∗comp weigh t s (2) >0.5

where r 1,r 2 are the reliabilities given by the comparison func-
tions of the two monomodal methods.

3.4. Library of attacks

The basic structure in this case is

s t r u c t (
’ med ia type ’ ,{} ,
’ a t t a c k f u n c t i o n ’ , s t r u c t (

’ name ’ ,{} ,
’ p a r a m e t e r s l i s t ’ ,{}

)
)

Each element parameters list(i) is a triplet indicat-
ing a range {starting value,step,end value}. The
prototype of an attack function is

s t r i n g a t t a c k e d f i l e = f u n c t i o n a t t a c k f u n c t i o n n a m e (
s t r i n g f i l e , p a r a m e t e r s)

where file is the full patch of a file of type media type.
Example: a simple unintentional attack can be Gaussian

noise addition on audio (or image) files. For instance, assume
that the first element atl(1) in the array of attacks atl with
the structure above implements Gaussian noise addition for au-
dio files:

a t l (1) . m e d i a t y p e = ’ audio ’
a t l (1) . a t t a c k f u n c t i o n . name= ’ g n o i s e ’
a t l (1) . a t t a c k f u n c t i o n . p a r a m e t e r s l i s t ={{ . 5 , . 1 ,2}}

The function g noise.m which must be in the execution
path will have a header

a t t a c k e d f i l e = f u n c t i o n g n o i s e (f i l e , power)

More complex attack functions can be defined after this type
of simple attacks is properly implemented.

The atl array variable will be stored in a MySQL database
and interfaced to the Matlab code.

3.5. Library of scripts

Benchmark scripts undertake simulations of the effect of at-
tacks on the performance of multimodal methods, relying on
the database of individuals and on the multimodal and attacks
libraries. Scripts are implemented as loops sweeping the pa-
rameter range of a given attack, while computing the rates (i.e.,
empirical probabilities) of miss/false alarm when using a given
multimodal method and attack:

• The rate of miss is computed as the percentage of authen-
ticated individuals not correctly matched.

• The rate of false alarm is computed as the percentage
of non-authenticated individuals (incorrectly) matched to
authenticated individuals.

In order to simplify the GUI implementation, the structure
of benchmark scripts is defined by templates. For the creation
of a new script, a list of predefined templates is offered to the
user. Upon choosing a multimodal method and suitable attacks
from the corresponding lists, a script is created based on the
template chosen. The newly created script is stored in the library
of scripts. The basic structure to add a script to the library is
s t r u c t (

’ s c r i p t n a m e ’ ,{} ,
’ t empla t e name ’ ,{} ,
’ s c r i p t p a t h ’ ,{} ,
’ r u n s t a t u s ’ ,{} ,
’ mul t imoda l ’ ,{}

)

A resettable Boolean variable indicates whether the script
has been run by the benchmark already.

script path gives the full name of the .m benchmark
script file and run status indicates whether the script hasn’t
been run yet, it is currently running, or it has been run. The
output of the script will be found by default in a file with ex-
tension .output.mat, with the same name without extension
as script path. The output file containing the results from
running the benchmarking script is timestamped and included in
the database.

Example: the pseudocode of a script template may be:
− a c q u i r e ’ m u l t i m o d a l hash ’
f o r a l l i n d i v i d u a l s f o r a l l a u t h e n t i c a t e d i n d i v i d u a l s

i n d a t a b a s e
f o r a l l ’ r anges ’ o f ’ a t t a c k ’
− ’ a t t a c k ’ i n d i v i d u a l
− compute ’ m u l t i m o d a l hash ’ o f a t t a c k e d i n d i v i d u a l

f o r a l l h a s h e s i n t h e l i b r a r y
− ’ compare hash ’ wi th a t t a c k e d hash
− compute r a t e o f miss
end

end
end

Using this particular template, the creation of a benchmark
script would require to fill in the terms in inverted commas,
that is, basically the multimodal method and the attack from
the corresponding libraries. Templates will be Matlab files with
dummy strings placed where the functions or parameters must
be filled in.

For instance, the first method in the variable scl, contain-
ing the scripts library with the structure defined above, could
be
s c l (1) . s c r i p t n a m e = ’ g a u s s i a n ’
s c l (1) . t e m p l a t e n a m e = ’ t e m p l a t e 1 ’
s c l (1) . s c r i p t p a t h = ’ / home / s c r i p t s / g a u s s i a n s c r i p t .m’
s c l (1) . r u n s t a t u s =2
s c l (1) . m u l t i m o d a l = ’ newhand face ’

The output of this script will be found by default in the file
gaussian script.output.mat. The scl array variable
is stored in the MySQL database.

3.5.1. Output module

Completed tasks will allow the user to plot the output resulting
from running the benchmark script. The output file will store
a fixed structure that will allow the output module to produce
plots. It is the responsibility of the template to produce the
right output file. This output file will contain a structure vari-
able called output with the following form:
s t r u c t (

’ p l o t l i s t ’ , s t r u c t (
’ x l a b e l ’ ,{} ,
’ y l a b e l ’ ,{} ,
’ t i t l e ’ ,{} ,
’ x ’ ,{}
’y ’ ,{}

)
)

150

Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, İstanbul, Turkey, July 16 - August 10, 2007

Note that the vectors plot list.x and plot list.y
must have the same size. An output plot will typically show
ROC plots (probability of false alarm versus probability of de-
tection), or these probabilities for different thresholds or noise
levels.

Text reports about the benchmarking results are also pro-
duced. A text report may include details such as functions and
parameters used, number of iterations, database signals used,
and quality measures obtained.

Example: In gaussian script.output.matwe may
find the structure

o u t p u t . p l o t l i s t (1) . x l a b e l = ’ P r o b a b i l i t y o f Miss ’
o u t p u t . p l o t l i s t (1) . y l a b e l = ’ Noise Var i ance ’
o u t p u t . p l o t l i s t (1) . t i t l e = ’ G a u s s i a n A d d i t i v e Noise ’
o u t p u t . p l o t l i s t (1) . x = [0 . 1 0 . 2 0 . 3 0 . 4 0 . 5]
o u t p u t . p l o t l i s t (1) . y =[0 0 . 0 1 0 . 0 5 0 .075 . 1]

More than one plots may be found in plot list, and the
user should be able to browse all of them.

3.6. Workflow

Figure 2: Main window of the benchmark GUI.

The main benchmark window in Figure 2 features several
buttons which allow access to the subwindows which are de-
scribed next as well as providing the interface for connecting
and disconnecting the GUI from the database. The windows
were designed keeping simplicity in mind and using the guide
tool of Matlab. This tool generates a standard .m file associated
to each window (.fig file). This file can be edited in order
to implement the callback functions required by the buttons and
other window objects.

3.6.1. Database of individuals window

The interface allows the user to:

• Browse, add and remove audio clips associated with each
face image (these face images and audio clips must come
in pairs).

• Generate hashes for images and audio clips as they are
added to the database.

3.6.2. Library windows

These windows allow the user to browse the corresponding li-
braries and to add and remove functions. The libraries of mono-
modal methods and attacks accept names of external Matlab
functions, whose headers we have defined above. It is also pos-
sible to enter the desired parameters for these functions. The li-
brary of multimodal methods accepts combinations of functions
in the library of monomodal methods and an associated weight
and attack function for each of these monomodal methods.

The libraries follow the structures defined in Section 3.
The library of scripts also allows the user to

• Generate a new script using an existing template and mul-
timodal function.

• Run one script or all of the scripts, preferably as back-
ground processes. The window displays the run status
of each script - 0 if not run, 1 if currently running and 2
if run.

• Plot the outputs of scripts with run status=2. Plots
are generated from the files *.output.mat as described
in Section 3.5.1.

• Generate a report detailing the inputs and outputs of the
script e.g. the multimodal, monomodal and attack func-
tions used.

4. METHODS AND FUNCTIONS IMPLEMENTED

In this section we briefly review the features of the methods and
attacks that were implemented in order to test the benchmark
capabilities.

4.1. Monomodal methods

4.1.1. Image Hashing

• Iterative Geometric Hashing [6]. Two algorithms are pro-
posed. The first one (algorithm A) initially shrinks the
input while keeping its essential characteristics (low fre-
quency components). It is recommended in [6] to use
to this end the discrete wavelet transform (DWT). How-
ever, a three-level DWT takes quite a long time in Mat-
lab. Instead, we shrink the image linearly. Next, geomet-
rically significant regions are chosen by means of sim-
ple iterative filtering. The reason for keeping geometri-
cally strong components while minimizing geometrically
weak ones is that a region which has massive clusters of
significant components is more resilient to modifications.
The second algorithm proposed in [6] (algorithm B) sim-
ply applies algorithm A on pseudorandomly chosen re-
gions of the input.

• NMF-NMF-SQ. This algorithm is based on a dimension-
ality reduction technique called nonnegative matrix fac-
torization (NMF) [7]. The NMF method uses nonnega-
tive constraints, which leads to a parts-based representa-
tion of the input. The algorithm implements a two-stage
cascade NMF, because it is experimentally shown in [7]
that this serves to significantly enhance robustness. After

151

Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, İstanbul, Turkey, July 16 - August 10, 2007

obtaining the NMF-NMF hash vector, a statistics quan-
tization (SQ) step is undertaken in order to reduce the
length of the hash vector.

• PRSQ (Pseudo-Random Statistics Quantization). This
algorithm is based on the assumption that “the statistics
of an image region in a suitable transform domain are
approximately invariant under perceptually insignificant
modifications on the image” [7]. After shrinking the in-
put (i.e., obtaining its low-frequency representation), a
statistic is calculated for each pseudo-randomly selected
and preferably overlapping subregions of the gist of the
input. Scalar uniform quantization on the statistics vector
yields the final hash vector.

4.1.2. Audio Hashing

If we assume that the conditions are such that a speaker is able
to approximately repeat the same utterance (as when a fixed text
is read aloud), then audio hashing algorithms can be used for
identifying voice clips.

• Microsoft Method [8] (also known as Perceptual Audio
Hashing Algorithm). It computes the hash value from
robust and informative features of an audio file, relying
on a secret key K (seed to pseudorandom generators).
An algorithmic description is given below:

1. The input signal X is put in canonical form us-
ing the MCLT (Modulated Complex Lapped Trans-
form) [9]. The result is a time-frequency represen-
tation of X , denoted by TX .

2. A randomized interval transformation is applied to
TX in order to estimate statistics, µX , of the signal.

3. Randomized adaptive quantization is applied to µX

yielding µ̂X .

4. The decoding stage of an error correcting code is
used on µ̂X to map similar values to the same point.
The result is the intermediate hash, hX .

The estimation of the signal statistics is carried out us-
ing Method III (see [8]), which relies on correlations of
randomized rectangles in the timefrequency plane. For
perceptually similar audio clips, estimated statistics are
likely to have close values, whereas for different audio
clips they are expected be different. The method applies
frequency cropping to reduce the computational load, ex-
ploiting the fact that the Human Auditory System cannot
perceive frequencies beyond a threshold.

• Boğaziçi Method [5]. This algorithm exploits the time-
frequency landscape given by the frame-by-frame MFCCs
(mel-frequency cepstral coefficients) [10]. The sequence
of matrices thus obtained are further summarized by choos-
ing the first few values of their singular value decomposi-
tion (SVD) [5]. The actual cepstral method implemented
is an improvement on [11].

• Philips Fingerprinting [12]. This method is an audio fin-
gerprinting scheme which has found application in the
indexing of digital audio databases. It has proved to be
robust to many signal processing operations. The method
is based on quantizing differences of energy measures
from overlapped short-term power spectra. This stag-
gered and overlapped arrangement allows for excellent
robustness and synchronization properties, apart from al-
lowing identification from subfingerprints computed from
short segments of the original signal.

4.1.3. Hand Recognition

The benchmark includes one algorithm for recognition of hands,
based on [13]. The algorithm takes as input images of hands
captured by a flatbed scanner, which can be in any pose. In a
pre-processing stage, the images are registered to a fixed pose.
To compare two hand images, two feature extraction methods
are provided. The first is based on measuring the distance be-
tween the contours representing the hands being compared, us-
ing a modified Hausdorff distance. The second applies indepen-
dent Component Analysis (ICA) to the binary image of hand
and background.

4.2. Attack functions

4.2.1. Image Attack Functions

• Random Bending Attack. This attack distorts the image
by modifying the coordinates of each pixel. A smooth
random vector field is created and the pixels are moved in
this field. The vector field must be smooth enough so that
the attacked image is not distorted too much. An iterative
algorithm is applied to create the horizontal and vertical
components of the vector field separately. In each itera-
tion, a Discrete Cosine Transform (DCT) is applied and
high frequency components removed. The attack func-
tion is designed for grayscale images; color images are
tackled using the luminance. The parameters of the at-
tack are the strength of the vector field, the cutoff fre-
quency for the DCT filtering, the maximum number of
iterations, and a smoothness threshold.

• Print Scan Attack. Floyd and Steinberg’s [14] error dif-
fusion algorithm is applied to transform each of the com-
ponents of a color image to bilevel values (0 or 1). The
algorithm processes the pixels in raster order. For each
pixel, the error between the bilevel pixel value and the
image pixel value is diffused to the surrounding unpro-
cessed pixel neighbours, using the diffusion algorithm.
After processing all pixels, the image is filtered by an av-
eraging filter.

• Contrast Enhancement. This function increases the con-
trast of the input image using the histeq histogram
equalization function of Matlab. An input parameter spec-
ifies a number of discrete levels N , and the pixel values
are mapped to these levels to produce a roughly flat his-
togram. Histogram equalization is applied separately to
the three components of a color image.

• Rotation and Crop Attack. This function rotates the input
image by a specified angle, relying on a specified interpo-
lation method. Because we include crop in imrotate
function we just have the central portion of the rotated
image in the output. The input parameters are the ro-
tation angle and the interpolation type (bilinear, nearest
neighbor or bicubic interpolation).

• Noise Attack. This function adds noise of a specified
variance to the input image using the imnoise function
of Matlab. Four different types of noise are supported,
namely Gaussian noise, Poisson noise, salt & pepper noi-
se, and speckle noise.

• Simple Chimeric Attack. An image is pseudo-randomly
selected from the database and a weighted average of
the image with the input image is created, using weights
given as input to the attack function. The two images are
not registered before the averaging, and hence the result-
ing image does not correspond to a true morphing of the

152

Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, İstanbul, Turkey, July 16 - August 10, 2007

images. Nevertheless, if the weight of the randomly se-
lected image is sufficiently strong in comparison to that
of the input image, it can be expected that this attack may
be useful to benchmark recognition algorithms.

4.2.2. Audio Attack Functions

Three audio attacks have been included in the benchmark:

• Noise Attack. This attack adds noise to the audio sig-
nal. The strength of the added noise is determined by an
input parameter that represents the signal to noise ratio.
Another parameter specifies the distribution of the noise,
which can be Gaussian, uniform, Gamma or Rayleigh.

• Delay Attack. The audio signal x(t) is summed with a
delayed version of itself, x′(t) = x(t)+αx(t−t0) which
produces an echo effect. The delay t0 and the weight α
of the delayed signal are input parameters.

• Pitch Bending Attack. This attacks modifies the pitch of
the audio signal without changing its duration. Firstly,
the length of the audio signal is changed while retain-
ing the original pitch, using the Matlab toolbox “phase
vocoder” [15]. Then the signal is decimated/interpolated
in order to recover the original length, what changes the
pitch. An input parameter determines whether the pitch
is compressed or stretched.

4.3. Templates

Two basic templates are defined in the prototype of the bench-
mark:

• The one described in the example in Section 3.5

• A template able to generate and test attacks that generate
modified/chimeric characters. It is essentially the same
as the previous one, but, as it generates non-authenticated
individuals, it focuses on computing the probability of
false alarm instead of the probability of miss.

− a c q u i r e ’ m u l t i m o d a l hash ’ f o r a l l i n d i v i d u a l s
f o r a l l a u t h e n t i c a t e d i n d i v i d u a l s i n d a t a b a s e

f o r a l l ’ r anges ’ o f ’ a t t a c k ’
− ’ a t t a c k ’ i n d i v i d u a l (i . e . non−

a u t h e n t i c a t e d i n d i v i d u a l)
− compute ’ m u l t i m o d a l hash ’ o f a t t a c k e d

i n d i v i d u a l
f o r a l l h a s h e s i n t h e l i b r a r y
− ’ compare hash ’ wi th a t t a c k e d hash
− compute r a t e o f f a l s e a l a rm

end
end

end

5. MULTIMODAL DATABASE

Data was collected from 92 subjects. For each individual, six
face images were collected, two scans of the palm of the left
hand and three videos. Subjects stood in front of a blue back-
ground canvas and the room was illuminated by artificial light.
The face images were taken with the subject’s head in the fol-
lowing positions:

1. Directly facing the camera;

2. Directly facing the camera, with glasses removed, if sub-
ject was wearing glasses in the first picture;

3. Head turned −90◦;

4. Head turned −45◦;

5. Head turned +45◦;

6. Head turned +90◦.

The three videos recorded the subject carrying out the fol-
lowing activities:

1. Reading a fixed text;

2. Performing four gestures;

3. Moving head while speaking freely.

The only part of the video data used in the multimodal bench-
mark is the audio portion of the first video. In this audio signal,
the subject is recorded reading a fixed English text of around
100 words. The participants consisted of an international group
of mainly non-native English speakers. Subjects were asked to
ignore any mistakes made in pronunciation and to continue read-
ing to the end of the text. The final part of the text is the numbers
one to ten, which were read twice. The rest of the video data was
collected for use in another eNTERFACE project incorporating
gesture recognition.

6. TESTS

6.1. Database of Libraries

The database consists of both the data collected and libraries of
the various monomodal, multimodal and attack functions. It has
been written as a simple relation database. The database has
been integrated into the Matlab code by means of a Mex file in
which a number of standard SQL commands have been defined
e.g. insert, select. The benchmark is capable of running,
and has been tested, under Linux, Mac OS and Windows.

6.2. Testing & Debugging

To illustrate the use of the benchmark, a multimodal identifier
was created through the benchmark consisting of a face identi-
fier and a hand identifier, both constructed using the iterative ge-
ometric image hashing algorithm A. Each monomodal method
was set to report a match when the reliability of the compari-
son function was above a threshold of 0.8. The face identifier
was weighted 0.6 in the multimodal combination. In a bench-
mark script, a print scan attack was applied to both the face and
hand images, varying the window size of the averaging filter and
tested on a small database of 5 individuals. The script produced
a report containing the probability of a miss i.e. the probability
that the multimodal identifier failed to correctly identify the in-
dividual, for different window sizes. Note that since there are 6
face images associated with each individual and two palm scans,
12 combinations of face and hand images could be tested per
person. The script output the probability of mis-identification
which is plotted in Figure 3.

The output plot in Figure 4 shows the results of simulating
the effect of rotation and crop on a multimodal fusion using al-
gorithms A and B in Section 4.1.1, applied to face images and
hand images respectively. The database of 92 individuals was
used. We see here that the benefit of the multimodal method
over either of the modalities on its own.

7. CONCLUSIONS AND FUTURE WORK

Although the basic structure of the benchmark is fully func-
tional, some issues have inevitably arisen during the short period
of time allowed for the development of this project. The main
issue faced at the end of the workshop were the computational
problems posed by the Matlab implementation of the methods.
The computational burden associated to the amount of iterations
within a benchmarking script may pose difficulties to complete

153

Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, İstanbul, Turkey, July 16 - August 10, 2007

Figure 3: Probability of a miss for a multimodal face and hand
identifier under the print & scan image attack.

Figure 4: Probability of a miss for a multimodal face and hand
identifier under the rotation and crop attack.

the simulations within a reasonable amount of time unless the
methods used are optimized.

In a similar fashion as other benchmarks [16], it would be
interesting to endow this benchmark with a certification proce-
dure. This procedure would entail defining a fixed set of attacks
– obviously dependent on the modalities – and benchmarking
scripts. The report obtained from this certification procedure
would be used to rank methods in a more systematic way. How-
ever establishing what type of attacks and scripts will be include
can be controversial, as the rankings obtained may be biased if
they are not carefully chosen.

8. ACKNOWLEDGEMENTS

The members of project #12 thank Prof. B. Sankur for con-
tributing the source code of the hand feature extraction method
developed by himself and his group.

This report, as well as the source code for the software de-
veloped during the project, is available online from the eNTER-
FACE’07 web site: http://www.enterface.net

9. REFERENCES

[1] F. Ahmed and M. Siyal, “A secure biometric authentica-
tion scheme based on robust hashing”, in Proceedings of
the 5th International Conference on Information, Com-

munications and Signal Processing, (New York, USA),
pp. 705–709, Dec 2005. 147

[2] Y. Sutcu, H. T. Sencar, and N. Memon, “A secure bio-
metric authentication scheme based on robust hashing”, in
Procs. of the 7th workshop on Multimedia and security,
(New York, USA), pp. 111–116, October 2005. 147

[3] A. Ross and A. Jain, “Information fusion in biomet-
rics”, Pattern Recognition Letters, Special issue: audio-
and video-based biometric person authenticaion (AVBPA
2001), vol. 34, pp. 2115–2125, September 2003. 147

[4] F. A. Petitcolas, “Watermarking schemes evaluation”,
IEEE Signal Processing, vol. 17, pp. 58–64, September
2000. 147

[5] H. Özer, B. Sankur, N. Memon, and E. Anarım, “Per-
ceptual audio hashing functions”, EURASIP Journal on
Applied Signal Processing, no. 12, pp. 1780–1793, 2005.
148, 152

[6] M. K. Mıhçak and R. Venkatesan, “New iterative geo-
metric methods for robust perceptual image hashing”, in
Procs. of ACM Workshop on Security and Privacy in Dig-
ital Rights Management, (Philadelphia, USA), 2001. 151

[7] V. Monga and K. Mıhçak, “Robust image hashing via
non-negative matrix factorizations”, in IEEE Intl. Conf. on
Acoustics, Speech and Signal Processing (ICASSP), vol. 2,
pp. 14–19, May 2006. 151, 152

[8] M. K. Mıhçak and R. Venkatesan, “A perceptual audio
hashing algorithm: A tool for robust audio identification
and information hiding”, in Procs. of the 4th Information
Hiding Workshop, vol. 2137 of Lecture Notes in Computer
Science, (Pittsburgh, USA), pp. 51–65, Springer, April
2001. 152

[9] H. S. Malvar, “A modulated complex lapped transform and
applications to audio processing”, in IEEE Intl. Conf. on
Acoustics, Speech and Signal Processing (ICASSP), vol. 3,
pp. 1421–1424, March 1999. 152

[10] L. R. Rabiner and R. W. Schafer, Digital Processing of
Speech Signals. Prentice Hall, 1978. 152

[11] B. Logan, “Mel frequency cepstral coefficients for music
modelling”, in Procs. of International Symposium on Mu-
sic Information Retrieval, (Indiana, USA), October 2000.
152

[12] J. Haitsma, T. Kalker, and J. Oostveen, “Robust audio
hashing for content identification”, in Procs. of the Inter-
national Workshop on Content-Based Multimedia Index-
ing, (Brescia, Italy), pp. 117–125, September 2001. 152

[13] E. Yoruk, E. Konukoglu, B. Sankur, and J. Darbon,
“Shape-based hand recognition”, IEEE Trans. Image Pro-
cessing, vol. 15, pp. 1803–1815, July 2006. 152

[14] R. Ulichney, Digital Halftoning. The MIT Press, 1987.
152

[15] D. P. W. Ellis, “A phase vocoder in Matlab”, 2002.
http://www.ee.columbia.edu/˜dpwe/
resources/matlab/pvoc. 153

[16] J. Vorbruggen and F. Cayre, “The Certimark benchmark:
architecture and future perspectives”, in IEEE Intnl. Conf.
on Multimedia and Expo, vol. 2, pp. 485–488, 2002. 154

154

http://www.enterface.net
http://www.ee.columbia.edu/~dpwe/resources/matlab/pvoc
http://www.ee.columbia.edu/~dpwe/resources/matlab/pvoc

Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, İstanbul, Turkey, July 16 - August 10, 2007

10. BIOGRAPHIES

Morgan Tirel is a M.Sc. student at the
University of Rennes, France.
Email: morgan.tirel@etudiant.univ-
rennes1.fr

Ekin Olcan Şahin received in 2006 his
B.Sc. in Electrical Electronics Engineer-
ing at Bilkent University, Ankara, Turkey.
Currently he is a M.Sc. student at the Elec-
trical & Electronics Engineering Depart-
ment of Boğaziçi University, Turkey.

Email: ekin.sahin@boun.edu.tr

Guénolé C. M. Silvestre received the
M.Sc. degree in electronic and electri-
cal engineering in 1993. In 1996, he re-
ceived the Ph.D. degree from the Univer-
sity of Dublin, Trinity College, Ireland, for
his work in silicon-on-insulator materials.
As a post-doctoral fellow with Trinity Col-
lege, Dublin, he pursued research on digi-
tal image processing and watermarking. In
1997, he was appointed Research Scientist

at the Philips Research Laboratories, Eindhoven, The Nether-
lands, and his research focus switched toward the study of poly-
mer light-emitting materials. In 1999, he joined the National
University of Ireland (University College Dublin), where his
present research activities lie in the area of digital communi-
cations, data-hiding, and signal processing. Dr. Silvestre was
the 1995 recipient of the Materials Research Society Graduate
Student Award.
Email: guenole@ihl.ucd.ie

Clı́ona Roche received her Bachelor of
Arts (Hons) in Computer Science (major)
and History of Art, at University College
Dublin (UCD), Dublin, Ireland. Currently
she is a Ph.D. student in Computer Science
at the same university on the topic of High
throughput comparative modelling of pro-
tein structure by machine learning.
Email: cliona.roche@ucd.ie

Kıvanç Mıhçak was born in Turkey in
1974. He received his B.S. degree from
Electrical and Electronics Engineering
Department, Bilkent University, Ankara,
Turkey in 1996 and the M.S. and Ph.D. de-
grees from Electrical and Computer Engi-
neering Department, University of Illinois,
Urbana-Champaign (UIUC), in 1999 and

2002 respectively. At UIUC, he was in the Image Formation
and Processing Group; his thesis advisors were Pierre Moulin
and Kannan Ramchandran. Between 2002 and 2005, he was a
researcher, with the Cryptography & Anti-Piracy Group at Mi-
crosoft Research, Redmond, WA. Currently, he is assistant pro-
fessor with the Electrical and Electronic Engineering Depart-
ment of Boğaziçi University.
Email: kivanc.mihcak@boun.edu.tr

Sinan Kesici was born in 1984, in Erz-
incan, Turkey. He is currently an under-
graduate student in Boğaziçi University,
Turkey. He is a senior student in Electrical
& Electronics Engineering Department.
His specialization option is Telecommuni-
cation Engineering.
Email: sinan940@yahoo.com

Neil J. Hurley received the M.Sc. de-
gree in mathematical science from Univer-
sity College Dublin (UCD), Dublin, Ire-
land, in 1988. In 1989, he joined Hi-
tachi Dublin Laboratory, a computer sci-
ence research laboratory at the University
of Dublin, Trinity College, from which he
received the Ph.D. degree in 1995, for his
work in knowledge-based engineering and
high-performance computing. He joined

the National University of Ireland, University College Dublin,
in 1999 where his present research activities lie in the areas of
data-hiding, signal processing, secure and robust information re-
trieval and distributed computing.
Email: neil.hurley@ucd.ie

Neslihan Gerek is a M.Sc. student at
Boğaziçi University, İstanbul, Turkey.
Email: neslihan.gerek@gmail.com

Félix Balado graduated with an M.Sc.
in Telecommunications Engineering from
the University of Vigo (Spain) in 1996,
and received a Ph.D. from the same insti-
tution in 2003, for his work in data hid-
ing. He then joined the National Univer-
sity of Ireland (University College Dublin)
as a post-doctoral fellow at the Informa-

tion Hiding Laboratory. Previously he worked as a research and
project engineer at the University of Vigo, in different research
projects funded by the Galician and Spanish Governments, and
by the European Union. His research interests lie in the areas of
multimedia signal processing, data hiding, and digital commu-
nications.
Email: fiz@ihl.ucd.ie

155

mailto:morgan.tirel@etudiant.univ-rennes1.fr
mailto:morgan.tirel@etudiant.univ-rennes1.fr
mailto:ekin.sahin@boun.edu.tr
mailto:guenole@ihl.ucd.ie
mailto:cliona.roche@ucd.ie
mailto:kivanc.mihcak@boun.edu.tr
mailto:sinan940@yahoo.com
mailto:neil.hurley@ucd.ie
mailto:neslihan.gerek@gmail.com
mailto:fiz@ihl.ucd.ie

	1 Introduction
	2 Description of the benchmark
	2.1 Library of monomodal methods
	2.2 Library of multimodal methods
	2.3 Library of attacks
	2.4 Library of benchmarking scripts

	3 Benchmark specifications
	3.1 Individuals database
	3.2 Library of monomodal methods
	3.3 Library of multimodal methods
	3.4 Library of attacks
	3.5 Library of scripts
	3.5.1 Output module

	3.6 Workflow
	3.6.1 Database of individuals window
	3.6.2 Library windows

	4 Methods and Functions implemented
	4.1 Monomodal methods
	4.1.1 Image Hashing
	4.1.2 Audio Hashing
	4.1.3 Hand Recognition

	4.2 Attack functions
	4.2.1 Image Attack Functions
	4.2.2 Audio Attack Functions

	4.3 Templates

	5 Multimodal Database
	6 Tests
	6.1 Database of Libraries
	6.2 Testing & Debugging

	7 Conclusions and Future Work
	8 Acknowledgements
	9 References
	10 Biographies

