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ABSTRACT
The objective of this study is to automatically extract annotated
sign data from the broadcast news recordings for the hearing
impaired. These recordings present an excellent source for au-
tomatically generating annotated data: In news for the hearing
impaired, the speaker also signs with the hands as she talks. On
top of this, there is also corresponding sliding text superimposed
on the video. The video of the signer can be segmented via the
help of either the speech or both the speech and the text, gener-
ating segmented, and annotated sign videos. We aim to use this
application as a sign dictionary where the users enter a word
as text and retrieve sign videos of the related sign with several
examples. This application can also be used to automatically
create annotated sign databases that can be used for training rec-
ognizers.
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1. INTRODUCTION

This project aims to exploit TRT news for the hearing impaired
programs in order to generate usable data for sign language ed-
ucation. The news video consists of three major information
sources: sliding text, speech and signs. Fig. 1 shows an exam-
ple frame from the recordings.

Figure 1: An example frame from the news recordings. The three
information sources are the speech, sliding text, signs.

The three sources in the video convey the same information
via different modalities. The news presenter signs the words as

she talks. It is important to note that sign languages have their
own grammars and word orderings. Thus, it is not necessary to
have the same word ordering in a Turkish spoken sentence and
in a Turkish sign sentence [1]. Thus, the signing in these news
videos is not Turkish sign language (Turk Isaret Dili, TID) but
Signed Turkish: the sign of each word is from TID but their
ordering would have been different in a proper TID sentence.
In addition to the speech and sign information, a correspond-
ing sliding text is superimposed on the video. Our methodology
is to process the video to extract the information content in the
sliding text and speech components and to use either the speech
alone or both the speech and the text to generate segmented and
annotated sign videos. The main goal is to use this annotation to
form a sign dictionary. Once the annotation is completed, unsu-
pervised techniques are employed to check consistency among
the retrieved signs, using a clustering of the signs.

Figure 2: Modalities and the system flow.

The system flow is illustrated in Fig. 2. The application re-
ceives the text input of the user and attempts to find the word in
the news videos by using the speech. At this step the applica-
tion returns several intervals from different videos that contain
the entered word. Then, sliding text information may optionally
be used to control and correct the result of the retrieval. This
is done by searching for the word in the sliding text modality
during each retrieved interval. If the word can also be retrieved
by the sliding text modality, the interval is assumed to be cor-
rect. The sign intervals will then be extracted by analyzing the
correlation of the signs with the speech. Sign clustering is nec-
essary for two reasons. First, there can be false alarms of the re-
trieval corresponding to some unrelated signs and second, there
are homophonic words that have the same phonology but differ-
ent meanings thus possibly different signs.
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2. SPOKEN TERM DETECTION

Spoken utterance retrieval part of this project will be used as
a tool to automatically segment the signs in a broadcast news
video for the disabled and to display the desired sign to the user
after the alignment. The general system diagram is given in Fig.
3 where the input to the search part is the query and the output
is the occurrence time, duration and the program name in which
the query appears in.

Figure 3: Block diagram of the spoken term detection system.

Three main modules of the system are speech recognition,
indexing and retrieval which will be explained in detail. Cur-
rently we have 127 broadcast news videos, each with a duration
of 10 minutes and sampled at 32 kHz. As a preprocessing op-
eration, the audio information is extracted and the sampling rate
is reduced to 16 kHz. The speech recognizer converts this audio
data into textual information (in terms of weighted finite state
automata). Indexation of the text is done via weighted finite
state transducers [2]. The index is built in such a way that when
it is composed with the query, the output is the search hits with
program name, occurrence time and duration as well as the ex-
pected count. This type of indexation introduces several benefits
as will be explained later.

2.1. Speech recognition

The speech recognizer takes a collection of audio files and con-
verts them into text. Before recognition, audio data is segmented
based on the energy constraint. Since the background does not
include music or noise it was adequate to identify the speech
and non-speech portions only. The method explained in [3] is
applied and some further arrangements are made on the output.
These post modifications were mainly about setting a minimum
duration limit on segments and merging them if they are smaller.

An HMM-based large vocabulary continuous speech recog-
nition (LVCSR) system is used for recognition. The feature vec-
tor consists of 12 MFCC components, the energy component as
well as delta and delta-delta components. The acoustic models
consist of decision tree clustered triphones and the output dis-
tributions are GMMs. The acoustic model used in this project
was previously trained on approximately 100 hours of broadcast
news data. The language models are pruned back off trigram
models which are based on words. The recognition networks
are represented as weighted finite state machines (FSMs). The
output of the ASR system is also represented as an FSM and
may be in the form of a best hypothesis string or a lattice of
alternate hypotheses. To illustrate this, the lattice output of a
recognized utterance is shown in Fig. 4. [4].

The labels on the arcs are the word hypotheses (or sub-
words such as morphemes) and the values next to the labels are
the probabilities of each arc. It is obvious that there is more
than one path from the initial state to the final. However, the
most probable path is “iyi gUnler” (”good afternoon”), which is
the correct transcription.

Figure 4: An example lattice output.It belongs to the utterance
“iyi gUnler”.

For the lattice output, more than one hypothesis is returned
with corresponding probabilities. Indexation estimates the ex-
pected count using path probabilities. By setting a threshold
on the expected count, different precision-recall points can be
obtained which results in a curve. On the other hand, the one-
best hypothesis is represented with only one point. Having a
curve allows choosing an operating point by setting the thresh-
old. Use of a higher threshold improves the precision but recall
falls. Conversely, a lower threshold value causes small expected
counts to be retrieved. This increases recall but decreases preci-
sion.

The opportunity of choosing the operating point is crucial.
Depending on the application, it may be desirable to retrieve all
the documents or only the most probable ones. For our case, it is
more convenient to operate at the point where precision is high.

Although this introduces some redundancy, using lattice out-
put of the ASR, improves system performance as shown in the
experiments. This improvement is expected to be much higher
for noisy data.

The HTK tool[5] is used to produce feature vectors and
AT&T’s FSM and DCD tools[6] are used for recognition. Cur-
rently, the word error rate of the speech recognizer is approx-
imately 20%. Using a morpheme based-model instead of the
word-based one reduces the WER and will be left as a future
work.

2.2. Indexation

The output of the speech recognizer is a weighted automaton
where each speech utterance of the dataset is represented as an
FSM and they are concatenated. Since input to indexation is
a finite state machine, it is advantageous to represent the in-
dexer as a transducer FSM. Another advantage of this approach
is that it simplifies dealing with arc weights or path probabili-
ties in the lattice. Since the input to indexation is uncertain, it
is important to keep log-likelihoods. This information should
be passed to the search module by the indexer for ranking pur-
poses. Since FSMs are compact representations of alternative
hypotheses with varying probabilities, designing the indexer as
an FSM is favorable.

The problem is to build an index which accepts any sub-
string of the utterance transcriptions. Thus the index can be
represented by a weighted finite-state transducer mapping each
factor of each utterance to the indices of the automata. This in-
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formation comes from the ASR output and is defined as:

T (x, i) = − log(EP|i| [C[x]]) (1)

where x is the substring, i is the automaton index, P is the
probability coming from ASR and Cx denotes the number of
occurrences of substring x in the utterance.

The factor selection is done by creating a new initial and
final state to the automata such that each intermediate state is
connected to both the initial and the final state. Thus it is pos-
sible to go from the initial state to any of the terms (phones or
words) and to reach the final state from there; this is accepted by
the transducer. After the new states and connections are added,
the automata are optimized with epsilon removal, determination
and minimization. The details of this process and the further
theory of weighted finite state automata are explained in [2].

A very powerful feature of this indexing method is its speed.
The resulting index also does not bother with the expansion of
the database. The search time for a query is linear in the size of
the query and the number of places it appears in the database.
Search duration is currently 1-1.8 seconds depending on the fre-
quency of the query and expanding the database from 20 videos
to 120 videos does not make any difference.

2.3. Retrieval

The top three blocks in 3, namely, preprocessing, recognition
and indexation are performed only once. When the query is
entered, only the retrieval module in the diagram is activated.

First the query is converted into an FSM and then composed
with the index FSM. After the optimization, the list of all indices
where the query appears and the corresponding log-likelihoods
are acquired. Since the probabilities are known, it is possible to
select the most probable outputs and rank the documents [2].

Now we have the utterance indices; however this includes
not only the query but other words. To clarify each word’s start-
ing time and duration we apply forced alignment. The final out-
put is the program name, starting time and duration of the query
in seconds.

For the client-server interaction, a server application using
sockets is written in PERL. Client side will be explained later.
When the server gets the query from the client, the search op-
eration is initiated and the standard output is sent back to the
client. If the user asks for a word which is not in the vocabulary,
an error message is displayed and no search is performed.

2.4. Experiments and results

2.4.1. Evaluation Metrics

Speech recognition performance is evaluated by the WER (word
error rate) metric which was measured to be around 20% in our
experiments. For evaluation of the retrieval system precision-
recall values and F-measures are used.

Let the reference transcriptions include R(q) occurrences of
the search term q. A(q) is the number of retrieved documents
and C(q) is the number of documents which are related to the
query from the retrieved ones.

Then

Precision(q) =
C(q)

A(q)
(2)

Recall(q) =
C(q)

R(q)
(3)

and the F-measure is:

F (q) =
2 ∗ Precision(q) ∗Recall(q)

Precision(q) + Recall(q)
(4)

Precision and recall values for each word in the query set
will be determined and averaged. Out-of-vocabulary words will
be discarded in the precision averaging. However their recall is
assumed to be zero for recall averaging. This is also the case for
words which exist in the reference but could not be retrieved.
The reason behind this assumption is that retrieving a wrong
document and retrieving nothing cannot be judged as if they are
the same.

2.4.2. Corpora

Although the whole collection consists of 127 videos, we used
only 15 for the evaluation.Since we have the reference manual
transcripts only for these files. The evaluation task begins with
the forced alignment of the manual transcriptions which will be
used as the reference. Start times and durations of each word -
and the silence - are identified and kept in the format (*.ctm),
shown in Fig 5, where the columns represents program name,
channel (studio, telephone etc.), start time(in sec.), duration(in
sec.) and spoken word (or silence) respectively.

2007-06-29-14-40 1 10.06 0.08 Z1
2007-06-29-14-40 1 10.14 0.23 iyi
2007-06-29-14-40 1 10.37 0.57 gUnler
2007-06-29-14-40 1 10.94 1.11 Z1

Figure 5: *.ctm file format. It is constructed after the forced
alignment of manual transcriptions.

A query set is created from the reference files by taking each
word uniquely. Each item in the query set is searched in the
database and search results are kept in a file with the format,
shown in Fig. 6. In this format, columns represent the program
file name in which the query is claimed to occur, start time (in
ms.), duration (in ms.) and relevance respectively. After these
files are obtained, precision and recall values are calculated and
averaged.

2007-06-29-14-40.avi, 255477, 480, 1
2007-06-29-14-40.avi, 271494, 460, 1
2007-06-29-17-40.avi, 530545, 500, 0.0118179

Figure 6: Search result file format. For each query, this file is
created and compared with the reference ctm file.

The retrieval result is checked with the reference ctm file
with a margin time. If the beginning and end times are found
to agree with margin seconds or less from the correct, search is
assumed to be successful.

2.4.3. Results

The index is created for the lattice and one-best output of the
recognizer. Precision-recall (no limit is set on the number of re-
trieved documents) and precision-recall at 10 (maximum num-
ber of retrieved documents is limited to 10) graphs are depicted
as in Fig. 7 and Fig. 8.

It is obvious from the plots that, use of lattices performs
better than one-best. This is also the case for precision and recall
at 10. The arrows point at the position where the maximum F-
measure is achieved for lattice. Comparison of F-measures of
lattice and one-best output of ASR are given in 1. Use of lattices
introduces 1-1.5 % of improvement. Since the broadcast news
corpora are fairly noiseless, the achievement may seem minor.
However for noisy data the difference is much higher [4].
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Figure 7: Precision-Recall for word-lattice and one-best hy-
potheses when no limit is set on maximum number of retrieved
documents.

Figure 8: Precision-Recall for word-lattice and one-best hy-
potheses when maximum number of retrieved documents is set
to 10 (precision at 10).

3. SLIDING TEXT RECOGNITION

3.1. Sliding Text Properties

The news videos are accompanied by a sliding text band, which
includes simultaneous transcription of what is being said. It is
placed at the bottom of the screen and contains characters with a
specific font, shown with white pixels over a solid background.
Speed of the sliding text is approximately constant throughout
the whole video sequence (usually 4 pixels/frame), which allows
each character to appear on the screen for at least 2.5 seconds.
An example of a frame with sliding text is shown in Fig. 9.

3.2. Baseline Method

The method we propose to obtain sliding text information con-
sists of three parts: Extraction of the text line, character recog-
nition and temporal alignment.

3.2.1. Text Line Extraction

Size and position of the sliding text band does not change through-
out the video. Therefore, it is found at the first frame and used
in the rest of the operations. To find the position of the text, first,
we convert the RGB image into a binary image, using grayscale

Table 1: Comparison of lattice and one-best ASR outputs on
maximum F-measure performance.

Max-F(%) Max-F@10(%)
Lattice 80.32 81.16

One-best 79.05 80.06

Figure 9: Frame snapshot of the broadcast news video.

quantization and thresholding with the Otsu method [7]. Then
we calculate horizontal projection histogram of the binary im-
age, i.e., the number of white pixels for each row. The text band
appears as a peak on this representation, separated from the rest
of the image. We apply a similar technique over the cropped text
band, this time on the vertical projection direction, to eliminate
the program logo. The sliding text is bounded by the remain-
ing box, whose coordinates are defined as the text line position.
Fig. 10 shows an example of binary image with its horizontal
and vertical projection histograms.

Figure 10: Binary image with horizontal and vertical projection
histograms.

Since there is redundant information in successive frames,
we do not extract text information from every frame. Experi-
ments have shown that updating text transcription once in every
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10 frames is optimal for achieving sufficient recognition accu-
racy. We call these the “sample frames”. The other frames in
between are used for noise removal and smoothing.

Noise in binary images stems mostly from quantization op-
erations in color scale conversion. Considering the low resolu-
tion of our images, it may cause two characters, or two distinct
parts of a single character to be combined, which complicates
the segmentation of text into characters. We apply morpholog-
ical opening with a 2x2 structuring element to remove such ef-
fects of noise. To further smooth the appearance of characters,
we horizontally align binary text images of the frames between
two samples, and for each pixel position, decide on a 0 or 1, by
voting.

Once the text image is obtained, vertical projection histogram
is calculated again to find the start and end positions of every
character. Our algorithm assumes that two consecutive charac-
ters are perfectly separated by at least one black pixel column.
The threshold of an inter-word space is determined adaptively,
by searching for outliers in character spacing. For proper align-
ment, only complete words are taken for transcription.

Each character is individually cropped from the text figure
and saved, along with its start and end horizontal pixel positions.

3.2.2. Character Recognition

For character recognition, we implement the template matching
method. Each binary character image is compared to each tem-
plate, pixel by pixel. The total number of matching pixels are
divided by the size of the character image and used as a simi-
larity score. Matched characters are stored as a string. Fig. 11
depicts a sample text band image, its transcribed text and corre-
sponding pixel positions, respectively.

Figure 11: Sample image and transcription.

3.2.3. Temporal Alignment

The sliding text is interpreted as a continuous band through-
out the video. Since we process only selected sample frames,
the calculated positions of each character should be aligned in
space (and therefore in time) with their positions from the pre-
vious sample frame. This is done using frame shift and pixel
shift values. For instance, a character which appears in posi-
tions 180-189 in the first sample and the one in 140-149 of the
second refer to the same character, since we investigate each
10th frame with 4 pixels of shift per frame. Small changes in
these values (mainly due to noise) are compensated using shift-
alignment comparison checks. Therefore, we obtain a unique
pixel position (start-end) pair for each character seen on the text
band.

We determine the final transcript as follows: For each frame,
we look for the occurrence of a specific start-end position pair,
and note the corresponding character to a character candidate list
(for different frames, these characters may not be the same, due
to recognition errors). The final decision is made by majority
voting; the character that is seen the most in the list is assigned
to that position pair.

3.3. Baseline Performance

We compare the transcribed text with the ground truth data and
use character recognition and word recognition rates as perfor-
mance criteria. Even if only one character of a word is misrec-
ognized, we label this word as erroneous.

Applying the baseline method on a news video dataset of
40 minutes (around 3500 words), we achieved 94% character
recognition accuracy, and 70% word recognition accuracy.

3.4. Discussions

One of the most important challenges of character recognition
was the combined effect of low resolution and noise. We work
with frames of 352x288 resolution, therefore, each character
covers barely an area of 10-14 pixels in height and 2-10 pixels
in width. In such a small area, any noise pixel distorts the im-
age considerably, thus making it harder to achieve a reasonable
score by template comparison.

Noise cancellation techniques created another disadvantage
since they removed distinctive parts of some Turkish characters,
such as erasing dots (İ, Ö, Ü), or pruning hooks (Ç, Ş). Fig. 12
shows examples of such characters, which, after noise cancella-
tion operations, look very much the same.

Figure 12: Highly confused characters.

3.5. Improvements over the Baseline

We made two major improvements over the baseline system, to
improve recognition accuracy. The first one is to use Jaccard’s
distance for template match score. Jaccard uses pixel compar-
ison with a slightly different formulation: Let nij be the total
number of pixel positions, where binary template pixel has value
i and character pixel has value j. Then, the comparison score is
formulated as [8]:

dj =
n11

n11 + n10 + n01
(5)

Using Jaccard’s distance for template match scoring resulted
in 96.7% accuracy for character recognition, and 80.0% for word
recognition accuracy.

The highest rate in the confusion matrix belongs to discrim-
ination of the letter “O” and the number “0”. To distinguish
these, the knowledge that a zero should be preceded or suc-
ceeded by another number, is used as a postprocessing oper-
ation. Adding this correction resulted in 98.5% character ac-
curacy and 90% word recognition accuracy, respectively. The
confusion rates are listed in Table 2.

4. SIGN ANALYSIS

4.1. Skin color detection

4.1.1. Skin color detection using a probabilistic model

Skin color is widely used to aid segmentation in finding parts
of the human body [9]. We learn skin colors from a training
set and then create a model of them using a Gaussian Mixture
Model (GMM). This is not a universal skin color model; but
rather, a model of skin colors contained in our training set.
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Table 2: Character confusion rates.

Character Character Confusion
(Original) (Recognized) Rate (%)

Ç C 8.33
Ğ G 1.49
Ğ Ö 2.99
H M 2.94
I 1 0.85
N M 0.34
Ö O 9.68
Ş S 2.73
Ü U 2.47
0 O 36.36
2 Z 7.14

Figure 13: Examples from the training data

Training of GMM. We prepared a set of training data by
extracting images from our input video sequences and manually
selecting the skin colored pixels. We used images of different
speakers under different lighting conditions. In total, we pro-
cessed six video segments. Some example training images are
shown in Fig. 13.

For color representation we use the RGB color space. The
main reason is that this color space is native for computer vision
and therefore does not need any conversion to other color space.
The collected data are processed by the Expectation Maximiza-
tion (EM) algorithm to train the GMM. After inspecting the spa-
tial parameters of the data we decided to use a five Gaussian
mixtures model. The resulting model can be observed in Fig.
14.

Figure 14: General look up table. Levels of likelihood can be
seen in different colors. Lower level likelihood of 128, higher
level likelihood of 220.

Using GMM for image segmentation. The straight for-
ward way of using the GMM for segmentation is to compute the
probability of belonging to a skin segment for every pixel in the
image. One can then use a threshold to decide whether the pixel
color is skin or not. But this computation would take a long
time, provided the information we have is the mean, variance
and gain of each Gaussian in the mixture. We have precomputed
the likelihoods and used table look-up.

4.1.2. Skin color detection using look up table

Look up table model description. We decided to create a look-
up table to store the likelihood that a color corresponds to a skin.
In this case the values of the look-up table are computed from
the probability density function given by GMM. The range of
likelihoods is from 0 to 255. A likelihood of 128 and more
means that the particular color belongs to a skin segment. With
this procedure we obtain a 256x256x256 look-up table contain-
ing the likelihood of all the colors from RGB color space.

The segmentation is straightforward. We compare the color
of each pixel with the value in the look-up table. According to
the likelihood of the color, we decide whether it belongs to skin
segment or not. For better performance, we blur the resulting
likelihood image. That way, the segments with low probability
disappear and the low probability regions near the high prob-
ability regions are strengthened. For each frame, we create a
mask of skin color segments by thresholding the likelihood im-
age (See Fig. 15).

Figure 15: The process of image segmentation. From left to
right: original image, probability of skin color blurred for better
performance, binary image as a result of thresholding, original
image with applied mask.)

The look up table is created using color information from
more than one speaker. Generally we want to segment a video
sequence with just one speaker. This means that with the look up
table we will obtain some undesirable pixels identified as skin
color pixels which do not belong to the particular speaker. Thus,
we need to adapt the look up table for each video. Since man-
ual data editing is not possible at this stage, a quick automatic
method is needed.

Training of the look up table. We refer to the general look
up table modeled from several speakers as the background look-
up table and describe how we adapt it to the current speaker.
First we need to extract the skin color pixels from the current
speaker. Using the OpenCV’s Haar classifier [10] we detect the
face of the speaker and store it in a separate image. This im-
age is then segmented using the background look up table and
a new look up table is created. We process all the pixels of the
segmented image and store the pixels’ color in the proper po-
sitions in the look up table. Information from one image is of
course not sufficient and there are big gaps in the look up table.
To solve this problem, we use a convolution with a Gaussian
kernel to smooth the look-up table. To save time, we process
color components separately. At the end of this step, we obtain
a speaker dependent look up table.

42



Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, İstanbul, Turkey, July 16 - August 10, 2007

Figure 16: Examples of different lighting conditions resulting
into different skin color of the speaker and the corresponding
adapted look up table.)

4.1.3. Adaptation of general skin color model for a given
video sequence

Now we need to adapt our background look up table to the new
speaker dependent look up table. We use weighted averaging of
the background and the speaker dependent look up tables. The
speaker is given more weight in the weighted averaging. This
way we eliminate improbable colors from the background look
up table thus improving its effectiveness. Some examples of
adapted look up tables can be seen in Fig. 16.

4.2. Hand and face tracking

The movement of the face and the hands is an important feature
of sign language. The trajectory of the hands gives us a good
idea about the performed sign. The position of the head is used
for creating a local system of coordinates and normalizing the
hand position.

There are many algorithms that are able to detect a face with
very good results. We use OpenCV’s Haar feature based face de-
tector [10]. From the resulting bounding rectangle we calculate
an ellipse around the face. The center of the ellipse is assumed
to be the center of mass of the head. We use this point as the
head’s tracked position.

The input of our tracking algorithm is a segmented image
containing only blobs of skin colored objects. As a result of
skin color detection, we have an image that contains only skin
colored regions. To retrieve the separate blobs from the image
we use cvBlobsLib [11]. There can be some blobs which appear
in our segmented image but they do not belong to the signer.
That means the blob is neither the signer’s head nor the signer’s
hand. We want to eliminate these blobs.

4.2.1. Blob filtering

First we eliminate the blobs with small area. Next we elimi-
nate blobs which belong to the background. The second step is
to take into account only the three biggest blobs in the image.
They should belong to the head and the hands of the signer as
the other false blobs are a result of noise. Sometimes when an
occlusion occurs there can be fewer than three blobs belonging
to the signer. We need to take this into account. Third, we elimi-
nate all the blobs that are too far away from the previous position
of already identified blobs. As a threshold, we use a multiple of
the signer’s head width. This solves the problem when a false
blob appears when a hand and the head are in occlusion.

Generally the biggest challenge in hand tracking is when
hands occlude each other, or the head. In this case, two or three
objects form a single blob. This situation can be easily detected,
but this information alone is not enough to resolve the occlu-
sion. We need to somehow know which objects of interest are
in occlusion or whether they are so close to each other that they
form a single blob. For this purpose, we try to predict the occlu-
sion. When two objects occlude in the next frame, we assume
that they are the predicted ones.

4.2.2. Occlusion prediction

We apply an occlusion prediction algorithm as a first step in
occlusion solving. We need to predict whether there will be an
occlusion and among which blobs will the occlusion be. For this
purpose, we use a simple strategy that predicts the new position,
pt+1, of a blob from its velocity and acceleration. The velocity
and acceleration is calculated by the first and second derivatives
of the position at the previous frames.

vt = pt−1 − pt (6)
at = vt−1 − vt (7)

pt+1 = pt + vt + at (8)

The size of the blob is predicted with the same strategy.
With the predicted positions and sizes of the blobs, we check
whether these blobs intersect. If there is an intersection, we
identify the intersecting blobs and predict that there will be an
occlusion between those blobs.

4.2.3. Occlusion solving

We decided to solve the occlusions by trying to find out which
part of the blob belongs to one of the objects and divide the blob
into two (or three in the case that both hands and head are in
occlusion). We divide the blob by drawing a black line or ellipse
at the location we think is the best. Thus we always obtain three
blobs which can then be tracked as will be shown later. Let us
describe the particular cases of occlusion.

Two hands occlude. In this case we separate the blob with
a line. We find the bounding ellipse of the blob of occluded
hands. The minor axis of the ellipse is computed and a black
line is drawn along this axis. For better results we draw the line
several pixels wide as can be seen on Fig. 17.

One hand occludes with the head. Usually the blob of the
head is much bigger than the blob of the hand. Therefore a di-
vision of the blob along the minor axis of the bounding ellipse
would have an unwanted effect. We use a template matching
method instead [12]. In every frame when the hand is visible we
collect its template. The template is a gray scale image defined
by the hand’s bounding box. When the occlusion is detected a
region around the previous position of the hand is defined. We
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Figure 17: An example of hand occlusion. From left original
image, image with the minor axis drawn, result of tracking.

calculate the correlation between the hand template and the seg-
mented image. We use a squared difference correlation method
to calculate the correlation,

R(x, y) =
X
x′

X
y′

(T (x′, y′)− I(x + x′, y + y′))2 (9)

where T is the template, I is the image we search in, x and y
are the coordinates in the image, x’ and y’ are the coordinates in
the template. After that we find the minimum in the result of the
correlation but we limit the search only to the region around the
last position. We draw a black ellipse at the estimated position
of the hand as in Fig. 18. The parameters of the ellipse are taken
from the bounding ellipse of the hand. As a last step we collect a
new template for the hand. Previously the last step was omitted
and the last known template of the hand was used. But often the
shape of the hand changes in front of the head, so it is necessary
to collect the template all the time be able to track the hand
properly. The remaining parts of the head in the template image
do not have a significant impact on the result of the correlation.

Figure 18: An example of hand and head occlusion. From left
original image, image with the ellipse drawn, result of tracking.

Both hands occlude with the head. In this case the tem-
plate matching method proved to be successful. We just need to
apply it to both hands.

4.2.4. Tracking of hands

For the tracking of the hands we are able to apply several rules.
First, we need to decide which blob belongs to what part of the
signer’s body. In principle, we assign the blobs in the current
frame to the hands and the head by comparing their previous
positions and velocities. We assume that the biggest blob closest
to the previous head position belongs to the signer’s head. The
other two blobs belong to the hands.

After examining the signs we found out that the right hand
of the signer is most of the time in the left part of the image
and the left hand is in the right side of the image. We use this
assumption when there is no hand in the previous frame: for the
current frame, we set the blob whose center is more left than the
other (whose x coordinate is smaller) as the right hand and vice
versa.

4.3. Feature extraction

Several features have been extracted from processed video se-
quences [13] for further use, for example for sign recognition,
clustering or alignment. These features can be separated into
three groups according to their character.

4.3.1. Tracking features

In the previous section the method for head and hands tracking
was introduced. The output of this algorithm is the position and
a bounding ellipse of the hands and the head during the whole
video sequence. The position of the ellipse in time forms the
trajectory and the shape of the ellipse gives us some informa-
tion about the hand or head orientation. The features extracted
from the ellipse are its width, height and angle between ellipse’s
major axis and x-axis of the image’s coordinate system. The
tracking algorithm provides five features per object of interest,
15 features in total.

Gaussian smoothing of measured data in time is applied to
reduce the noise. The width of the Gaussian kernel is five, i.e.
we calculate the actual smoothed value from two previous, ac-
tual and two following measured values.
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Figure 19: Smoothing features - example on 10 seconds se-
quence of four left hand features (x and y position, bounding
ellipse width and height).

We then normalize all the features such that they are speaker
independent and invariant to the source resolution. We define a
new coordinate system such that the average position of the head
center is the new origin and scale with respect to the average
width of the head ellipse. Thus the normalization consists of
translation to thehead center and scaling.

The coordinate transformations are calculated for all 15 fea-
tures, which can be used for dynamical analysis of movements.
We then calculate differences from future and previous frames
and include this in our feature vector:

x̂′(t) =
1

2
(x(t)− x(t− 1)) +

1

2
(x(t + 1)− x(t))(10)

=
1

2
x(t− 1) +

1

2
x(t + 1) (11)

In total, 30 features from tracking are provided, 15 smoothed
features obtained by the tracking algorithm and their 15 differ-
ences.
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Figure 20: Trajectories of head and hands in normalized coor-
dinate system.

4.3.2. DCT features for hands

The hand shape tells us a lot about the performed sign. For
some signs it is the only distinguishable feature as there can be
very similar signs in trajectory or the signs can be static. In ev-
ery frame we take a discrete cosine transformation (DCT) of the
grayscale template image for each hand. Most of the informa-
tion in DCT is distributed in the lower frequencies. We extract
the upper left triangular part of the DCT matrix which corre-
sponds to those low frequencies. We use 54 features per hand
(triangle matrix with width 10). We do not use DC value since
this corresponds to the average gray scale value.

Figure 21: left: reconstructed hand from 54 DCT parameters
(by inverse DCT), right: original image.

The DCT parameters are calculated from a grayscale im-
age where the light areas correspond to the skin colors and the
dark areas to the non-skin colors. When a hand is in occlusion
with another hand or with the head, then other skin color areas
are present in the source image and those areas are included in
the DCT parameters. That way a particular hand shape with-
out and with occlusion has different DCT parameters. Only the
same hand shape with the same occlusion has the same DCT
parameters. This can be either an advantage or a disadvantage
depending on the further use.

4.3.3. DCT features for the whole image

At last the DCT parameters of the whole image were calcu-
lated. The DCT was calculated from the original image with
the skin color mask applied and converted to gray scale. Again
the upper left triangular part of the resulting DCT matrix was
extracted and the DC parameter was omitted. We have experi-
mented to find that the optimal number of the DCT parameters is
104 (triangular matrix with 14 rows and columns). This number
of parameters contains sufficient information about skin color

distribution in the image, and does not contain speaker depen-
dent features (such as a specific shape of the head). This infor-
mation about the specific shapes is stored in higher frequencies,
which are cropped from our DCT parameter matrix. We keep
only information from the lower frequencies, where the general
distribution of skin color in the image is stored.

Figure 22: a) original image, reconstructed images by inverse
DCT from b) 35, c) 77, d) 104, e) 135 DCT parameters.

4.3.4. Summary of extracted features

We have extracted a total of 242 features. Some of them have
more information content than others. We extracted all of them
in order to have more features for following experiments. The
features are summarized in Table 3.

Table 3: Confusion rates.

Number of
features Description

Tracking fea-
tures

30 head and hands: x, y posi-
tion width, height, angle of
bounding ellipse + deriva-
tions

DCT features
- hands

2 x 54 DCT parameters for left and
right hand shape

DCT features
- whole image

104 DCT parameters for skin
color distribution in image

4.4. Clustering

Our goal is to cluster two or more isolated signs. If the signs
are considered to be the same they should be added to the same
cluster. The purpose of clustering is to define a distance (or sim-
ilarity) measure for our signs. We have to consider that we don’t
know the exact borders of the sign. The sign news, which con-
tains continuous sign speech, was split into isolated signs by a
speech recognizer (see Fig. 23). In the case the pronounced
word and the performed sign are shifted, the recognized borders
will not fit the sign exactly. We have examined that the spoken
word usually precedes the corresponding sign. The starting bor-
der of the sign has to be moved backwards in order to compen-
sate the delay between speech and signing. A typical delay of
starting instant is about 0.2 seconds backwards. In some cases,
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the sign was delayed against the speech, so it’s suitable to move
the ending instant of the sign forward. To keep our sequence as
short as possible, we shifted the ending instant about 0.1 second
forward. If we increase the shift of the beginning or the ending
border, we increase the probability that the whole sign is present
in the selected time interval, at the expense of including parts of
previous and next signs into the interval.

Figure 23: Timeline with marked borders from speech recog-
nizer.

Now we take two signs from the news whose accompanying
speech was recognized as the same word. We want to find out
whether those two signs are the same or are different (in case
of homonyms). After we extend the borders of those signs (as
described above), we suppose that those intervals contain our
examined sign and can contain ending part of the previous sign
and beginning part of the next sign. The goal is to calculate the
similarity of these two signs and to determine if they contain
same sign.

Our first experiment was calculating distances between a
manually selected short sequence which contains one sign and
other same length sequences which were extracted from a longer
interval. See Fig. 24, where we calculated distances between a
0.6 second long sequence and the same length sequences ex-
tracted from 60 seconds long interval (i.e. we have extracted 0.6
second long sequence starting at frame 1, than from frame 2 and
so on). This way we have extracted nearly 1500 sequences and
calculated their distances to our selected sequence. This experi-
ment has shown that our distance calculation has high distances
for different signs and low distances for similar signs. This was
manually evaluated by comparing video sequences containing
compared intervals. One may observe that in frame 500, the
distance is zero, in fact this is the frame from which we have
taken our first, manually selected sequence and then we have
compared two same sequences.
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Figure 24: Experiment: distance calculation between 0.6 sec-
ond long sequence and same length sequences taken from 60
seconds long interval.

The distance of the two same length sequences is calculated
from tracking features and their derivations. We have not ex-
perimented with the hand DCT features, so when the distance is
calculated as low, it means that those signs are similar in hand
and head position and speed, but can differ in the hand shape.

The distance is calculated in the following way:

1. the difference between corresponding features of two signs
is calculated for each frame

2. these differences are squared

3. resulting squared differences are summed over all frames
and all those sums for each feature are summed together
(we consider same weight for all features)

4. calculated distance is normalized by multiplication with
factor 1/length of sequence

This distance calculation is very fast, but the problem is
when compared sequences contain not only our examined sign,
but parts of other signs, then the distance increases. Next prob-
lem is time warping. If two same signs are performed with dif-
ferent speed, then the distance increases too.

The solution for both can be usage of a multidimensional
DTW (dynamic time warping) algorithm. It’s obvious it can
handle time warped signals, but we suppose it could solve prob-
lem with inclusion of other signs in examined intervals as well:
if we calculate the lowest cost path in DTW matrix, than the part
where the cost grows slowly correspond to comparing two same
signs, otherwise when the cost grows fast two different signs are
compared.

Another possible solution is using HMMs (Hidden Markov
Models), where one sign is represented by one HMM and each
HMM has some additional hidden states at the beginning and at
the end, which correspond to the “noise” before and after given
sign. Parts of neighboring signs represent this noise. When we
cluster more than two signs, we use the following method:

1. Calculate pair wise distances between all compared signs,
store those distances in upper triangular matrix

2. Group two most similar signs together and recalculate the
distance matrix (it will have one less row and column)

3. Repeat step 2. until all signs are in one group

4. Mark the highest difference between two distances, at
which two signs were grouped together in following steps,
as distance up to which the signs are in the same cluster
(see Fig. 25)
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Figure 25: Dendogram - grouping signs together at different
distances.

Clustering was implemented in Matlab as standalone and
server applications. The server application receives a list of
signs from a client, calculates their distances, clusters those signs
and sends the cluster information for each sign back to the client.

5. APPLICATION AND GUI

5.1. System Design and Application Details

The user interface and the core search engine are separated and
the communication between is being done via using TCP/IP
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socket connections. This design is also expected to be helpful
in the future since a web application is planned to be built using
this service. This design can be seen in the Fig. 26.

Figure 26: System Structure.

In Fig. 27, the screenshot of the user interface is shown.
There are mainly five sections in it. The first is the “Search”
section where the user inputs a word or some phrases using the
letters in Turkish alphabet and sends the query. The application
communicates with the engine on the server side using a TCP/IP
socket connection, retrieves data and processes it to show the
results in the “Search Results” section. The results being done
in the same news file is grouped together and shown with date
and time information in the tree structure so that the user can
also use the application to scan the news archives. A “recent
searches” menu is added to the search box aiming to cache the
searches and increase the service time. But the user can clear
the search history to retrieve the results from the server again
for the recent searches. The relevance of the returned results
(with respect to the speech) is shown using stars (0 to 10) in the
tree structure to inform the user about the reliability of the found
results. Moreover, the sign clusters is shown in paranthesis, next
to each result.

Figure 27: Screenshot of the User Interface.

When the user selects a result, it is loaded and played in
the “Video Display” section. The original news video or the

segmented news video is shown in this section according to the
user’s “Show segmented video” selection. The segmented video
is added separately to figure above to indicate this. In addition
to video display, the “Properties” section also informs the user
about the date and time of the news, starting time, duration and
the relevance of the result. ”Player Controls” and “Options” en-
able the user to expand the duration to left/right or play with the
volume/speed of the video to analyze the sign in detail. Apart
from using local videos to show in the display, one can uncheck
“Use local videos to show” and use the videos on the web. But
the speed of loading video files from the web is not satisfactory
since the video files are very large.

5.2. Used Tools

The ease and power of python language with the wxPython’s
GUI bindings gave the most help in the user interface creation.
wxFormBuilder enabled us to design the UI file separately.
In addition, py2exe is used to create executables from the python
code and finally nsis is used to create a standalone program
setup from separate files and folders.

6. CONCLUSIONS

We have developed a Turkish sign dictionary that can be used
as tutoring videos for novice signers. The dictionary is easy to
extend by adding more videos and provides a large vocabulary
dictionary with the corpus of the broadcast news videos. The ap-
plication is accessible as a standalone application and will soon
be accessible from the Internet.
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where she is now Professor of computer
engineering. Her current research interests

are in image processing, computer vision, and computer graph-
ics.
Email: akarun@boun.edu.tr

48

http://opencvlibrary.sourceforge.net/
http://opencvlibrary.sourceforge.net/
http://opencvlibrary.sourceforge.net/cvBlobsLib
http://opencvlibrary.sourceforge.net/cvBlobsLib
http://opencvlibrary.sourceforge.net/cvBlobsLib
mailto:aranoya@boun.edu.tr
mailto:ismailar@boun.edu.tr
mailto:campr@kky.zcu.cz
mailto:erinc.dikici@boun.edu.tr
mailto:mhruz@kky.zcu.cz
mailto:dennizk@gmail.com
mailto:siddika.parlak@boun.edu.tr
mailto:akarun@boun.edu.tr


Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, İstanbul, Turkey, July 16 - August 10, 2007
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